

The [unfinished] LotusScript Book
By Julian Robichaux

June, 2003

The [unfinished] LotusScript Book Page 2 of 156
 by Julian Robichaux

Introduction
Welcome to my unfinished book.

About a year ago (early 2002), I decided that I was going to try to sit down and write a book about
LotusScript. My motivation was that I hadn’t been able to find any books that were specifically
written with “advanced” LotusScript programmers in mind, so I was going to try to write something
that might have useful information for people who had already worked with the language for a
while. Not that I consider myself a LotusScript “guru” or anything, but I figured I had been
programming for long enough to be able to put one or two interesting things down on paper.

So, I wrote out a table of contents and started waking up early every day to add a little more and a
little more. After several months, I actually had the rough drafts of a few chapters done, and I was
making good progress. Then life swooped in and we had another baby, and the next thing I knew
hadn’t written anything in about 8 months. So I had a choice: should I try to pick up where I left off,
or abandon the project altogether?

I decided that before I put any more time into the book, I would try to assess the feasibility of a
LotusScript book from a publisher’s standpoint – granted, that was probably something I should
have done before I ever started writing in the first place, but better late than never. So I started
going to bookstores and visiting online book retailers with that in mind, and I saw that most
bookstores didn’t even have any Lotus Notes books on the shelves in the first place, and the
selection at the online retailers was pretty slim.

I finally decided that even if I could convince some poor publisher to print this book for me, that it
would never make it to the bookstore shelves, and it would probably never get promoted in any
meaningful way, and (in short) it would be a huge failure and disappointment for me. Furthermore, I
had started working on some other side projects that I would have to drop or delay in order to finish
the book, and I just didn’t have the enthusiasm that I once had to finish it up. The thrill was gone.

At that point, I had to decide what to do with what I had already written. It seemed a shame to just
delete the files and throw away about 5 months worth of work, especially because I thought that
some of the things I had already written might actually help someone else out there. However, I
really didn’t want to spend any more time on the book, because if I wasn’t going to finish it, then I
also wasn’t going to labor over revisions of the unfinished chapters.

So, what you have here is the raw, unfinished manuscript of what was to become my LotusScript
book. I ended up with 5 chapters, plus some random scripts that I was going to put in a
“Miscellaneous” chapter or an Appendix or something. If you’re curious, here is the original table
of contents that I was working from:

• Introduction
o Who should read this?
o What is LotusScript?
o Why use LotusScript?
o Versions of Notes
o Where can I get more information?

• Writing in LotusScript

The [unfinished] LotusScript Book Page 3 of 156
 by Julian Robichaux

o Standard events
o Global variables and routines
o Built-in functions, classes, etc.
o Writing your own functions and subs
o Writing your own classes
o Script libraries
o Using an LSX
o Using a DLL
o OLE Automation

• Error handling
• Notes function boilerplates
• String functions
• Lists and Arrays
• Numeric functions
• Date/Time functions
• File manipulation
• ODBC
• OLE/COM
• MS Office
• Accessing DLLs
• Windows API
• Notes API
• Algorithms
• Miscellaneous Notes scripts
• Miscellaneous other scripts

Appendix A: @ Function Equivalents
Appendix B: LotusScript Limits
Appendix C: Tips, Tricks, and Pet Peeves

As you can see, my five draft chapters really only puts me about 25% of the way to completion of
the first draft of the book, so I still had a lot more writing to do. In addition, my target audience was
users of Lotus Notes and Domino version 4.6 and R5, and by the time I started revisiting the
chapters, ND6 was on the market and version 6.5 was already in public beta. If I ever did manage to
finish the book, then by the time it got published it would be at least 2 releases behind!

So, once I convinced myself that I wasn’t going to make any money off the book in the first place,
and I would probably never finish it in such a way that it would be publishable, I decided that the
proper thing to do was just to give it away.

Luckily, I already had an established website (http://www.nsftools.com), so “publishing” the book
to the web wouldn’t be a problem. Just plop everything into a PDF file, and put it out on the site. I
don’t know that I’ll ever make any meaningful updates to this manuscript, but if I do you then will
be able to find it at my nsftools.com site. If you’re a publisher and you’re feeling crazy enough to

http://www.nsftools.com

The [unfinished] LotusScript Book Page 4 of 156
 by Julian Robichaux

pay me to finish this thing up, please contact me at the site (contact information is on the home
page, or on the “About” page).

Everything in this document was written entirely by me (Julian Robichaux), unless stated otherwise
in the text. As such, you may not republish (on the web, in a magazine, in a book) any of the
material herein without my consent and without giving proper credit to me – sorry, but I spent a
good deal of my personal time writing this material, and I’d at least like to get credit for it. You
may, however, use the code and information presented here in any programs or scripts that you
would like to use it in, free of charge and without permission, although I’d ask that you are kind
enough to mention where it came from in the comments of your source code.

In case there are any lawyers reading this, the information presented in this document is provided
"as-is", and should be used at your own risk. I make no express or implied warranty about anything,
and I will not be responsible or liable for any damage caused by the use or misuse of anything
related to this document. I make no guarantees about anything, and some of the information herein
might be incorrect. Please thoroughly test all of the information and code that you find here before
you attempt to use it in your production environment. Finally, you are not allowed to use this code
for the propagation of weapons of mass destruction, nor can you use it in conjunction with harming
small animals or forest creatures…these things are right out.

Okay, I think that about covers it. I apologize for the unfinished quality of any of the information
that follows; however, you got this for free, and you get what you pay for. I hope you find this
document useful in some way.

April 2003
Julian Robichaux
http://www.nsftools.com

http://www.nsftools.com

The [unfinished] LotusScript Book Page 5 of 156
 by Julian Robichaux

A Note About Efficiency and Error Checking
While most of the scripts in this book were designed to be as efficient as possible (from the
standpoint of speed), there is sometimes a tradeoff between efficiency and readability. This book is
meant to be somewhat of a teaching tool, and as a result, all of the scripts were written with
readability as a primary objective. While this does not mean that someone with only a basic
knowledge of LotusScript will be able to look at all of the scripts and understand them completely,
it does mean that I tried not to skip or combine too many steps, I tried to use complete blocks and
evaluation formulas for loops and if-then statements, and I tried to keep the individual lines of script
as short as possible. In several cases, the scripts could have been a little shorter and possibly a little
more efficient by (for example) combining several lines of script into one, but such practice was
avoided when it would have hampered the reader's ability to understand the logic of the script.

On the other hand, error checking was used rather conservatively throughout this book. While I
generally believe that every function or subroutine should have an error-handling block, I left out
the error block in many of the scripts in order to keep them reasonably short. In cases where error
checking or data type checking seemed necessary or important, however, I normally left the
checking logic in place.

The [unfinished] LotusScript Book Page 6 of 156
 by Julian Robichaux

String Manipulation
You'll be dealing with strings in almost every aspect of your LotusScript programming. Text strings
are everywhere. Luckily, the LotusScript language has quite a few built-in functions and statements
that allow you to perform a lot of string manipulation natively. A summary of these functions is
below.

Function/Statement Usage Example

Asc Returns the numeric ASCII
character code for the first
character in a string.

Chr[$] Returns the character represented
by a numeric ASCII character
code.

CStr Converts a number or date value
to a string.

Format($) Converts a number, date, or string
value to a string of a given
format.

FullTrim (New in R5) Removes whitespace
from a string (trailing, leading,
and multiple spaces), or removes
empty entries from an array.

InStr Returns the position of one string
within another string.

InStrB Returns the byte position of one
string within another string
(technically replaced by InStrBP)

InStrBP Returns the byte position of one
string within another string, using
the platform-native character set

InStrC (New in R5) Returns the column
position of one string within
another string, for column-based
writing systems such as Thai.

The [unfinished] LotusScript Book Page 7 of 156
 by Julian Robichaux

LCase[$] Returns a string converted to
lowercase.

Left[$] Returns the given number of
characters from the left
(beginning) of a string.

LeftB[$] Returns the given number of
bytes from the left (beginning) of
a string (technically replaced by
LeftBP)

LeftBP[$] Returns the given number of
bytes from the left (beginning) of
a string, using the platform-
specified character set.

LeftC (New in R5) Returns the given
number of columns from the left
(beginning) of a string, for
column-based writing systems,
such as Thai.

Len Returns the number of characters
in a string.

LenB Returns the number of bytes in a
string (technically replaced by
LenBP).

LenBP Returns the number of bytes in a
string, using the platform-native
character set.

LenC (New in R5) Returns the number
of columns in a string, for column
based writing systems such as
Thai.

Like Returns a Boolean indicating
whether or not a string matches a
given pattern.

LSet Sets a string variable to the
leftmost x characters of another
string, where x is the original
length of the string variable being
set.

The [unfinished] LotusScript Book Page 8 of 156
 by Julian Robichaux

set.

LTrim Returns a string with no leading
spaces.

Mid[$] As a function, returns a specified
number of characters from a
specified location in a string. As a
statement, replaces a specified
number of characters of a string
with another string.

MidB[$] Returns a specified number of
bytes from a specified location in
a string (technically replaced by
MidBP)

MidBP[$] Returns a specified number of
bytes from a specified location in
a string, using the platform-
specified character set

MidC (New in R5) Returns a specified
number of bytes from a specified
location in a string, for column-
based writing systems such as
Thai.

Right[$] Returns the given number of
characters from the right (end) of
a string.

RightB[$] Returns the given number of
bytes from the right (end) of a
string (technically replaced by
RightBP).

RightBP[$] Returns the given number of
characters from the right (end) of
a string, using the platform-
specified character set.

RightC Returns the given number of
characters from the right (end) of
a string, for column-based writing
systems such as Thai.

The [unfinished] LotusScript Book Page 9 of 156
 by Julian Robichaux

systems such as Thai.

RSet Sets a string variable to the
rightmost x characters of another
string, where x is the original
length of the string variable being
set.

RTrim[$] Returns a string with no trailing
spaces.

Space[$] Returns a string consisting of a
specified number of spaces.

Str[$] Converts a number to a string
(adding a leading space for
positive numbers)

StrComp Same as StringCompare

StrCompare Compares two strings and returns
either NULL, -1, 0, or 1.

StrConv Returns a string converted to a
different case (upper, lower, or
proper-case) or a different
character set.

StrLeft (New in R5) Returns the part of a
string to the left of the first
occurrence of a given substring.

StrLeftBack (New in R5) Returns the part of a
string to the left of the last
occurrence of a given substring.

StrRight (New in R5) Returns the part of a
string to the right of the first
occurrence of a given substring.

StrRightBack (New in R5) Returns the part of a
string to the right of the last
occurrence of a given substring.

The [unfinished] LotusScript Book Page 10 of 156
 by Julian Robichaux

String[$] Returns a string consisting of a
specified ASCII character,
repeated a specified number of
times.

Trim[$] Returns a string with no trailing
or leading spaces.

UCase[$] Returns a string converted to
uppercase.

UChr[$] Returns the character represented
by a numeric Unicode character
code.

Uni Returns the numeric Unicode
character code for the first
character in a string.

UString[$] Returns a string consisting of a
specified Unicode character,
repeated a specified number of
times.

Val Converts a string to a number.

While this is a pretty formidable list of functions, it should be a good indication of how often you'll
be manipulating strings in LotusScript. You should also make sure you review this list of built-in
functions before you decide to write a string manipulation routine yourself. For example, before you
decide to start writing and debugging a function to simulate the @ProperCase function, keep in
mind that the StrConv function will do that natively.

Representations of Strings
LotusScript stores strings internally using 2-byte characters. While you might think that this is just
technical nitpicking, it actually comes into play in certain instances. This is why you can have a
LotusScript string of up to 64k in size, but you can only have a string length of up to 32k characters
(because each character is 2-bytes long). The 2-byte representation is actually the same as the way
that Unicode characters are stored. So even though you don't realize it, LotusScript is actually
storing strings as Unicode.

So what is Unicode? Well, the "old" representation for characters in strings is ASCII, which is a
single-byte representation. Using only one byte for a character only gives you 256 different
possibilities (one byte is 8 bits, and 2 to the eighth power is 256). This isn't bad if you're just storing

The [unfinished] LotusScript Book Page 11 of 156
 by Julian Robichaux

English characters, but if you want to store characters from many different languages (like English
and Traditional Chinese and Japanese), then you'll need a lot more than 256 possibilities.

Unicode is a double-byte representation of string characters, which gives you 65,536 different
possibilities (256 x 256). This is much better for dealing with international characters. However, if
you're expecting a single-byte character, and you end up getting a double-byte character, you'll have
a lot of empty space in your string. Specifically, there will be a null character (Chr(0)) between
every letter in the string. For example, the ASCII representation of "A" is 65, but the Unicode
representation is 0065, so if you're looking at a Unicode string but you're expecting an ASCII string,
you'll see an "A" and a null character instead of just an "A".

So when does this come into play? Well, when you're just dealing with Lotus Notes forms,
formulas, and scripts, all the conversion and the storage and the on-screen display happens in the
background for you, so it never really matters how the strings are represented. However, if you're
reading data from an external source, you can occasionally run into trouble.

For example, if you're reading string information from a file, LotusScript expects files opened in
Sequential mode to have ASCII (single-byte) characters, and it expects files opened in Binary mode
to have Unicode (double-byte) characters. So if you issue an Input command to get text from a
Unicode file that's open in Sequential mode, you'll get a string that has null characters between all
the letters. Or if you read ASCII strings from a Binary mode file using the Get command, you'll get
a bunch of funny characters, because the single-byte characters are being read as double-byte
characters. Conversion functions for both of these situations are provided at the end of this chapter.

Tips, Tricks, and Things to Watch Out For
There are quite a few things you can do to make your string manipulation routines work faster and
more efficiently. Especially if you end up working with large strings (10,000 characters or greater),
making small modifications in your scripts based on these tips can result in huge performance gains.

Concatenating Strings
String concatenation can be an expensive operation if you have to do it a large number of times,
because every time the string grows in size, LotusScript has to reallocate memory to accommodate
the new string size. Now, this isn't to say that you should never concatenate strings over and over to
create a new string. For example, consider the following script:

tempString$ = Space$(10000)

startTime! = Timer()
For i% = 1 To 10000

Mid$(tempString$, i, 1) = "a"
Next
Print "Time Elapsed: " & Round(Timer() - startTime!, 2) & " seconds"

startTime! = Timer()
tempString$ = ""
For i% = 1 To 10000

tempString$ = tempString$ & "a"
Next
Print "Time Elapsed: " & Round(Timer() - startTime!, 2) & " seconds"

The [unfinished] LotusScript Book Page 12 of 156
 by Julian Robichaux

The string concatenation in this case ends up being much faster. This is for two reasons: first,
because the Mid function has to perform a search and replace operation in order to create the new
string in the first loop, and this kind of repetitive action on a large string ends up taking quite a bit
of time. Second, the initial creation of the string (using the Space function) pre-allocated the
memory for the large string that we were going to create, which makes the concatenation go much
faster.

To see what a difference it makes to initialize a string before performing multiple concatenations,
try this script out:

 tempString$ = ""
 startTime! = Timer()
 For i% = 1 To 10000
 tempString$ = tempString$ & "a"
 Next
 Print "Time Elapsed: " & Round(Timer() - startTime!, 2) & " seconds"

 tempString2$ = Space$(10000)
 tempString2$ = ""
 startTime! = Timer()
 For i% = 1 To 10000
 tempString2$ = tempString2$ & "a"
 Next
 Print "Time Elapsed: " & Round(Timer() - startTime!, 2) & " seconds"

The second loop runs in about 70% of the time it takes for the first loop to run. If you're going to
create a large string using concatenation, and you know the approximate size of the string you'll end
up with, you'll often get better performance if you initialize the string you're creating with the Space
function before you start the concatenation. When you're dealing with smaller strings or small
numbers of concatenations, the difference in time becomes negligible.

Using & vs. + for String Concatenation
The decision to use & or + for string concatenation is somewhat a matter of personal preference, but
the "proper" way to do it is to use the ampersand (&). One of the advantages to using & instead of +
is that you don't have to worry about converting non-string values when you're adding them to a
string. For example, in the two lines of code:

Print "Using + gives us" + 1 + 2
Print "Using & gives us " & 1 & 2

the first line will give an error, while the second is perfectly legal (and will output "Using & gives
us 12"). In order to make the first line of script work, we'd have to enter:

Print "Using + gives us" + Cstr(1) + Cstr(2)

which is just a lot more typing. Also, if you're adding information to a string using variables, the
nature of the & concatenation operator that automatically converts information to strings means that
you don't have to worry about the data type of the variable as you're adding it.

Using = vs. StrCompare to Compare Strings
When comparing strings, the equals (=) operator is slightly faster than the StrCompare()function.
For example, with the two pieces of code:

The [unfinished] LotusScript Book Page 13 of 156
 by Julian Robichaux

isMatch% = (string1$ = "some string")
isMatch% = StrCompare(string1$, "some string")

the first comparison is faster than the second.

The advantage to using the StrCompare() function is that it has an optional 3rd argument that allows
you to specify what kind of match you're testing for (case- or pitch-sensitive). If you use this
function, however, be aware that if two strings match, a zero is returned, which is normally
interpreted as a boolean False!

If you're checking for a single character instead of an entire string, then it's much faster to compare
using the Asc() function, instead of comparing strings. With the two pieces of code:

isMatch% = (letter1$ = "A")
isMatch% = (Asc(letter1$) = 65)

the second comparison is a great deal faster than the first. However, when comparing the two lines
of code:

isMatch% = (letter1$ = "A")
isMatch% = (Asc(letter1$) = Asc("A"))

the difference in speed is negligible. So if you're comparing the value of a single character against a
constant ASCII value, you should convert the character using the Asc() function and compare it to
the numeric ASCII value. If you're comparing two characters that may vary in value, you can just
compare using an equals sign and save yourself all the conversions.

Using the $ Version of Functions
Many string functions have two versions: one that returns a variant string and one that returns a
string (indicated by a $ at the end of the function name). In my testing, there is generally no speed
difference between the two versions of these functions to produce a string. For example, comparing
the two lines of code:

leftString$ = Left(string1$, 100)
leftString$ = Left$(string1$, 100)

the second line is approximately the same speed as the first, despite the fact that there is an implicit
conversion from a variant to a string value in the first operation.

 Using Instr vs. Stepping Through the String
As you might expect, the fastest way to find an occurrence of a string within another string is by
using the LotusScript Instr function. No surprises there. However, there is a special case when it can
actually be faster to step through a string character by character, rather than using several Instr calls.
Consider the following piece of script:

 tempString$ = Space$(30000)

 startTime! = Timer()
 pos% = Instr(tempString$, " ")
 count% = 0
 Do Until (pos% = 0)
 count% = count% + 1

The [unfinished] LotusScript Book Page 14 of 156
 by Julian Robichaux

 pos% = Instr(pos% + 1, tempString$, " ")
 Loop
 Print "Instr Time Elapsed: " & Round(Timer() - startTime!, 2) & " seconds; " & count%

 startTime! = Timer()
 strLen% = Len(tempString$)
 count% = 0
 For i% = 1 To strLen%
 If (Asc(Mid$(tempString$, i%, 1)) = 32) Then
 count% = count% + 1
 End If
 Next
 Print "For Time Elapsed: " & Round(Timer() - startTime!, 2) & " seconds; " & count%

In this case, it's actually faster to step through the string to find all the occurrences of the space
character than it is to perform multiple calls to Instr. Why? Because Instr is always doing a string
comparison to find the character, which (as we discussed before) is much slower than doing an
Integer comparison of the ASCII value of a character. So in this specific example, where you need
to find a specific character multiple times in a large string that contains many instances of that
character, it's actually quicker to step through the string character by character.

This may seem like far too unusual of a situation to even be worth mentioning, but it's actually
come up for me on two different occasions. On the first, I had to write a script that counted the
number of lines in a text file. The fastest way to do this (for large files) was to read large pieces of
the file into a string and count the number of Chr(13) characters in the string. On the second
occasion, I had to parse very long strings with single-character delimiters. Using this technique gave
me some performance benefits in both instances.

Using Recursion with Large Strings
Using recursion to perform operations on large strings can sometimes give you huge performance
benefits, although it can also sometimes slow you down (or crash your program). Several of the
functions in this chapter will show you instances when it might be good (or bad) to write a recursive
function.

There's no general rule as to when recursion will work well and when it won't, because it's different
for every situation. If you do decide to use recursion, make sure you do a lot of testing for extreme
circumstances, so that your function doesn't run out of stack space during heavy operations (many
functions run out of stack space after 50 to 100 recursions, depending on the function).

Using || or {} as String Literal Delimiters
Normally when you assign a value to a string literal, you enclose the string in quotation marks. For
example:

myString$ = "This is my string. It looks like many other strings. But this one is
mine."

You could also perform the same assignment using vertical bars (||) or braces ({}) as the delimiters.

myString$ = |This is my string. It looks like many other strings. But this one is
mine.|
myString$ = {This is my string. It looks like many other strings. But this one is
mine.}

The [unfinished] LotusScript Book Page 15 of 156
 by Julian Robichaux

This can come in handy in two cases. One is when you are creating a string that has a lot of
quotation marks within it. If you use a vertical bar or a brace, you avoid the need to use double
quotation marks within the string. For example:

myQuotedString$ = |This is a "quoted" string.|

This is especially good to use if you're using the Evaluate statement, which often requires you to
pass several sets of quotation marks within the formula you want to evaluate. The second case
where the "alternate" delimiters are useful is when you are creating a string with many carriage
returns in it. If you use vertical bars or braces to delimit a string, you can embed carriage returns
without having to concatenate Chr(13) & Chr(10) characters all over the place. For example:

myMultiLineString$ = {This string has multiple lines.
Here's the second line.
And the third.}

This technique is good for writing Javascript to a Web page, or for writing multi-line statements to a
form field.

Custom Routines
The rest of this chapter will consist of custom subs and functions that will demonstrate ways to
manipulate strings.

Repeat Function
This will end up being a kind of obscure example to start the chapter off with, but we might as well
jump in feet first. The obvious way to code a function that mimics the @Repeat function is this:

Script – Simple (slow) Repeat function
Function RepeatSimple (text As String, numTimes As integer) as String
 Dim tempString As string
 Dim i As Integer

 For i = 1 To numTimes
 tempString = tempString & text
 Next

 RepeatSimple = tempString
End Function

Add a little error handling, and you've got a perfectly serviceable script. However, it's really slow
when you start repeating your characters a large number of times. Is there a better way? Of course
there is:

Script – Very fast Repeat function
Function Repeat (text As String, numTimes As Integer) As String
 '** EXTREMELY FAST
 '** This function repeats the text string the specified number of times.
 '** For example, Repeat("abc", 3) = "abcabcabc"
 '** While the code for this function may seem overly complex, it is much
 '** more efficient (faster) than simply calling:
 '** tempstring = tempstring & text
 '** when dealing with large numbers of repetitions.

The [unfinished] LotusScript Book Page 16 of 156
 by Julian Robichaux

 On Error Goto processError

 Dim tempString As String
 Dim binLength As Integer
 Dim leftOver As Integer
 Dim i As Integer

 If (text = "") Or (numTimes < 1) Then
 Repeat = ""
 Exit Function
 End If

 '** The most efficient way to create our resulting string is to keep

'** doubling tempString until we're close to the string length that we
'** want, then adding any remaining repetitions to the end. The number
'** of times we can double the string without going over is the power
'** of 2 represented by the most significant 1 in the binary
'** representation of numTimes.

 binLength = Len(Bin(numTimes)) - 1
 leftOver = numTimes - (2 ^ binLength)
 tempString = text

 '** Double the string as many times as we can
 If (binLength > 0) Then
 For i = 1 To binLength
 tempString = tempString & tempString
 Next
 End If

 '** Then add any remaining repititions by making a recursive call
 If (leftOver > 0) Then
 tempString = tempString & Repeat(text, leftOver)
 End If

 Repeat = tempString
 Exit Function

processError:
 Dim errMess As String
 errMess = Error$
 Repeat = ""
 Exit Function

End Function

Okay, so what's this function actually doing? For starters, we can easily figure out that it's a lot
faster to create a large string by doubling a string over and over than by adding new pieces to the
string little by little. This script starts by figuring out how many times you can double the text that
you were given, in order to create a large string without creating a string larger than what we want.
Once we've done this, we should have a string close to the size that we're looking for, but there will
usually be a few more repetitions of the original text string that we need to tack on there.

The best way to add the remaining repetitions of the string on to the end is to make a recursive call
to this function. This will apply the same "doubling" logic to the number of repetitions that we have
left, and keep doing this until we have the string we're looking for. In this case, the recursive call is
"safe", because we'll never recurse more than 14 times (the largest integer value is 32767, which is
111111111111111 in binary, which would cause this script to recurse 14 times to get down to 1).

The [unfinished] LotusScript Book Page 17 of 156
 by Julian Robichaux

Finding the Last Occurrence of a Substring Within a String
We know that Instr will give us the first occurrence of a substring within a string, but to find the last
occurrence of the substring means that we have to call Instr several times until we get to the end of
the string. The "easy" way to code a function that finds the last occurrence of a substring is this:

Script – Find the last substring in a string (easy & slow)
Function InstrLastEasy (startPos As Integer, fullString As String, _
searchString As String, caseSensitive As Integer) As Integer
 Dim pos As Integer, lastPos As Integer

 pos = Instr(startPos, fullString, searchString, caseSensitive)
 Do While (pos > 0)
 lastPos = pos
 pos = Instr(lastPos + 1, fullString, searchString, caseSensitive)
 Loop

 InstrLastEasy = lastPos
End Function

This does the basic job, it's easy to follow, and it works just fine for a string with a small number of
occurrences of the substring. However, it gets really slow if you have a large string with a large
number of occurrences of the substring. A much faster way to write this function is like this:

Script – Find the last lsubstring in a string (fast)
Function InstrLast (startPos As Integer, fullString As String, _
searchString As String, caseSensitive As Integer) As Integer
 '** find the last position of a substring within a string
 Dim stringLength As Integer
 Dim pos As Integer
 Dim halfPos As Integer
 Dim posBefore As Integer, posAfter As Integer
 Dim lastPos As Integer, endPos As Integer
 Dim tempString As String

 stringLength = Len(fullString)

 '** exit early if there's nothing to search
 If (stringLength = 0) Or (Len(searchString) = 0) Then
 InstrLast = 0
 Exit Function
 End If

 pos = Instr(startPos, fullString, searchString, caseSensitive)
 If (pos = 0) Then
 '** also exit early if searchString isn't in fullString
 InstrLast = 0
 Exit Function
 Else
 '** otherwise, find a point halfway between the last known

'** position of a match and the end of the string, and search
'** both segments

 halfPos = pos + ((stringLength - pos) \ 2)
 If (halfPos > Len(searchString) + 1) Then
 posAfter = Instr(halfPos - Len(searchString), fullString, searchString,
caseSensitive)
 '** only check the first half if there was no match in

'** the second half
 If (posAfter = 0) Then
 posBefore = Instr(pos + 1, theString, searchString, caseSensitive)

The [unfinished] LotusScript Book Page 18 of 156
 by Julian Robichaux

 End If
 Else
 posBefore = Instr(pos + 1, fullString, searchString, caseSensitive)
 End If

 If (posAfter > posBefore) Then
 lastPos = posAfter
 endPos = stringLength
 Elseif (posBefore > 0) Then
 lastPos = posBefore
 endPos = halfPos
 End If

 '** if we found a match in either segment, recurse and look

'** again within that segment
 If (lastPos > 0) Then
 If (lastPos = stringLength) Then
 InstrLast = lastPos
 Else
 tempString = Mid$(fullString, lastPos + 1, endPos - lastPos + 2)
 InstrLast = lastPos + InstrLast(1, tempString, searchString,
caseSensitive)
 End If
 Else
 InstrLast = pos
 End If
 End If

End Function

This version of the function gains speed and efficiency by doing the following: it finds the first
occurrence of the substring, then it splits the rest of the string in half and finds the next occurrence
in both halves, and it takes the higher of the two possible positions that it found and uses recursion
to keep doing this until we can't find the substring anymore. Because we're halving the string every
time we search, we don't have to actually search the entire string from beginning to end, we can
keep trying to jump forward halfway to the end as a part of our search.

If we calculate our recursion in a worst-case scenario (32k string, all spaces, searching for the last
space character), we don't really have to recurse too many times. The first calculation will split the
string in half and find an occurrence at position #15999, the second (first recursion) will find an
occurrence at position #8000, the third (second recursion) will find an occurrence at position #4000,
and so on, which mathematically extends to only 16 total recursions until we get to the last
occurrence. That shouldn't be too much of a strain on our computer, and it's a whole lot less
searching than calculating the Instr value 32,000 times.

LotusScript Versions of @Left, @LeftBack, @Right, @RightBack
Okay, before you start complaining that R5 already has native LotusScript versions of these
functions, let's consider a few things. First of all, not everyone has upgraded to R5 yet. Heck, at the
time I'm writing this (early 2002), there are still companies out there running ccMail. Those people
need these functions. Second, you may need to write slightly modified versions of these functions
that take special situations into account (we'll see an example of that later in the chapter). These
functions will give us a basis for writing those modifications.

Script – LotusScript version of @Left

The [unfinished] LotusScript Book Page 19 of 156
 by Julian Robichaux

Function StringLeft (text As String, searchTerm As String, caseSensitive As Integer)
As String
 '** Example: StringLeft("www.lotus.com", ".", True) would return "www"
 '** If the searchTerm isn't found, nothing is returned

 Dim pos As Integer

 '** If there is no searchTerm, just exit
 If (searchTerm = "") Then
 StringLeft = text
 Exit Function
 End If

 '** try to find the searchTerm
 pos = Instr(1, text, searchTerm, caseSensitive)

 If (pos > 0) Then
 StringLeft = Left$(text, pos - 1)
 Else
 StringLeft = ""
 End If

End Function

Script – LotusScript version of @LeftBack
Function StringLeftBack (text As String, searchTerm As String, caseSensitive As
Integer) As String
 '** Example: StringLeftBack("www.lotus.com", ".", True) would
'** return "www.lotus"

 '** If the searchTerm isn't found, nothing is returned

 Dim pos As Integer

 '** If there is no searchTerm, just exit
 If (searchTerm = "") Then
 StringLeftBack = text
 Exit Function
 End If

 '** try to find the searchTerm, using the custom
 '** InstrLast function
 pos = InstrLast(1, text, searchTerm, caseSensitive)

 If (pos > 0) Then
 StringLeftBack = Left$(text, pos - 1)
 Else
 StringLeftBack = ""
 End If

End Function

Script – LotusScript version of @Right
Function StringRight (text As String, searchTerm As String, caseSensitive As Integer)
As String
 '** Example: StringRight("www.lotus.com", ".", True) would
'** return "lotus.com"

 '** If the searchTerm isn't found, nothing is returned

 Dim pos As Integer

 '** If there is no searchTerm, just exit
 If (searchTerm = "") Then

www.lotus.com
www.lotus.com
www.lotus
www.lotus.com

The [unfinished] LotusScript Book Page 20 of 156
 by Julian Robichaux

 StringRight = text
 Exit Function
 End If

 '** try to find the searchTerm
 pos = Instr(1, text, searchTerm, caseSensitive)

 If (pos > 0) Then
 StringRight = Mid$(text, pos + 1)
 Else
 StringRight = ""
 End If

End Function

Script – LotusScript version of @RightBack
Function StringRightBack (text As String, searchTerm As String, caseSensitive As
Integer) As String
 '** Example: StringRightBack("www.lotus.com", ".", True) would
'** return "com"

 '** If the searchTerm isn't found, nothing is returned

 Dim pos As Integer

 '** If there is no searchTerm, just exit
 If (searchTerm = "") Then
 StringRightBack = text
 Exit Function
 End If

 '** try to find the searchTerm, using the custom
 '** InstrLast function
 pos = InstrLast(1, text, searchTerm, caseSensitive)

 If (pos > 0) Then
 StringRightBack = Mid$(text, pos + 1)
 Else
 StringRightBack = ""
 End If

End Function

As you can see, all of the functions are essentially the same, with the exception of the use of the
Instr or the InstrLast functions (remember InstrLast from earlier in the chapter?), and the way that
the final string is calculated if a match is found.

LotusScript Version of @ReplaceSubstring
The @ReplaceSubstring function is another useful function that appears in the @Command
language but not in LotusScript. I'll present 3 different ways of coding this function.

Script – LotusScript version of ReplaceSubstring, using the Evaluate function
Function ReplaceSubstringEvaluate (Byval fullString As String, oldString As String,
newString As String) As String
 Dim session As New NotesSession
 Dim db As NotesDatabase
 Dim doc As NotesDocument
 Dim var As Variant

 Set db = session.CurrentDatabase

www.lotus.com

The [unfinished] LotusScript Book Page 21 of 156
 by Julian Robichaux

 Set doc = New NotesDocument(db)

 Call doc.ReplaceItemValue("FullString", fullString)
 Call doc.ReplaceItemValue("OldString", oldString)
 Call doc.ReplaceItemValue("NewString", newString)

 var = Evaluate("@ReplaceSubstring(fullString; oldString; newString)", doc)

 ReplaceSubstringEvaluate = var(0)

 '** clean up the memory we used
 Set doc = Nothing
 Set db = Nothing

End Function

This version of the function uses the Evaluate function to call the actual @ReplaceSubstring
function and run it against our variables. In order to do this, we have to create a temporary
document that holds our variables in fields, and then we can run @ReplaceSubstring against those
fields. We have to do this because in pre-R5 versions of Notes, Evaluate can only run using either
string literals or fields from a document. In a situation like this, we don't know any of the string
values ahead of time, so we need to run Evaluate against fields that we populate. (If you know that
all of your users will be using R5, you can simply pass the parameters directly.)

Despite the fact that there is some overhead involved with opening the database and creating a
document, this method is still by far the fastest way (from a performance standpoint) to emulate
@ReplaceSubstring.

Unfortunately, @ReplaceSubstring can only do case-sensitive searches, so if you need case-
insensitive search-and-replace functionality, you'll need to use one of the other functions below.
There can be some problems with this version of the function, too. First of all, if the user who's
running the function doesn't have authority to create documents in the database, the function will
fail. Second, some of the earlier versions of the 4.5 and 4.6 clients had problems with memory leaks
when using the Evaluate function. If you're using one of those versions of Notes, you should avoid
this function.

Another option is to perform the entire process with LotusScript, as in the following example:

Script – LotusScript version of @ReplaceSubstring
Function ReplaceSubstring (Byval fullString As String, oldString As String, newString
As String) As String
 On Error Goto processError

 Dim tempString As String
 Dim tempString2 As String
 Dim lenOldString As Integer
 Dim pos As Integer

 '** If the user passes us bogus values, just exit
 If (fullString = "") Or (oldString = "") Then
 ReplaceSubstring = fullString
 Exit Function
 End If

 '** initialize the variables
 tempString = fullString

The [unfinished] LotusScript Book Page 22 of 156
 by Julian Robichaux

 lenOldString = Len(oldString)
 pos = Instr(tempString, oldString)

 '** initialize tempString2, to speed things up a little
 If ((Len(fullString) * Len(NewString)) > 32000) Then
 tempString2 = Space$(32000)
 Else
 tempString2 = Space$(Len(fullString) * Len(NewString))
 End If
 tempString2 = ""

 '** get all the matches in the string, building a new string as we go
 Do While (pos > 0)
 tempString2 = tempString2 & Left$(tempString, pos - 1) & newString
 tempString = Mid$(tempString, pos + lenOldString)
 pos = Instr(tempString, oldString)
 Loop

 '** add anything that's left in the original string to the end of

'** the return string
 tempString2 = tempString2 & tempString

 ReplaceSubstring = tempString2
 Exit Function

processError:
 '** error 228 is String Too Large
 Dim errMess As String
 errMess = "Error " & Err & ": " & Error$
 ReplaceSubstring = fullString
 Exit Function

End Function

There are a couple different ways of actually doing the searching and replacing within the string:
you can either go through character by character to find your substring or you can use Instr, and
when you're creating the new string you can either modify the original string as you go or you can
create a new string additively, as in the example shown.

Generally, the quickest way to perform this operation is to use Instr to search, and to create the new
string additively, because it takes less overhead to create a new string than it does to modify an
existing string over and over – that is, assuming that you pre-initialize the string, as we did in the
function above. By initially setting the string to it's largest possible value using the Space()
function, and then resetting it to nothing before we start, we can force LotusScript to allocate the
memory for the final string all at once, early in the script, so that it won't have to keep allocating the
string memory little by little as the string grows. To see the difference, run the script in separate
agents with and without the pre-initialization, on a long string with a lot of replacements.

One thing you might want to change about the function above, depending upon your needs, is the
value returned by the function in the case of an error. In the version shown above, the original string
is returned if an error occurs while the function is running. Depending on your situation, it may be
more useful to return either an empty string, or the portion of the string that was successfully
operated upon prior to the occurrence of the error.

In case you were wondering about the performance of a ReplaceSubstring function that uses
recursion, you can try out the following script:

The [unfinished] LotusScript Book Page 23 of 156
 by Julian Robichaux

Script – LotusScript version of @ReplaceSubstring, using recursion
Function ReplaceSubstringRecursive (Byval fullString As String, oldString As String,
newString As String, retPos As Integer) As String
 '** recursive -- tricky math to calculate retPos
 On Error Goto processError

 Dim tempString As String
 Dim tempString2 As String, tempString3 As String
 Dim lenOldString As Integer
 Dim position As Integer
 Dim offset As Integer, halfPos As Integer
 Dim tempLeft As Integer
 Dim lastPos As Integer, lastPos2 As Integer

 '** If the user passes us bogus values, just exit
 If (fullString = "") Or (oldString = "") Then
 ReplaceSubstringRecursive = fullString
 Exit Function
 End If

 tempString = fullString
 lenOldString = Len(oldString)
 position = Instr(fullString, oldString)

 If (position > 0) Then
 tempString = Left$(fullString, position - 1) & newString
 tempString2 = Mid$(fullString, position + lenOldString)

 retPos = position
 halfPos = Len(tempString2) \ 2

 If (halfPos > lenOldString) Then
 tempString3 = ReplaceSubstringRecursive(Left$(tempString2, halfPos),
oldString, newString, lastPos)
 If (lastPos = 0) Then
 offset = halfPos - lenOldString + 1
 tempLeft = offset
 Else
 offset = lastPos + lenOldString
 tempLeft = Len(tempString3) - (halfPos - (offset - 1))
 End If
 tempString3 = Left$(tempString3, tempLeft)
 Else
 offset = 1
 End If

 tempString2 = ReplaceSubstringRecursive(Mid$(tempString2, offset), oldString,
newString, lastPos2)

 If (lastPos2 > 0) Then
 retPos = position + (lenOldString - 1) + (offset - 1) + lastPos2
 Elseif (lastPos > 0) Then
 retPos = position + (lenOldString - 1) + lastPos
 End If
 End If

 ReplaceSubstringRecursive = tempString & tempString3 & tempString2
 Exit Function

processError:
 Print "Error " & Err & ": " & Error$
 ReplaceSubstringRecursive = fullString
 Exit Function

The [unfinished] LotusScript Book Page 24 of 156
 by Julian Robichaux

End Function

This version of the function uses recursion to continue splitting the string in half over and over, so
that the ReplaceSubstring function can operate on smaller and smaller chunks of the string, and then
add all of those small chunks together to form the new string. There are only a few unusual
situations where this version of the function will give you better performance than the previous
version, so you don't generally need to add this level of complexity to this particular function.

However, so you know how the function works, here's the logic. The only reason why this would
work more quickly as a recursive function is if we thought that the efficiency we gain by having
LotusScript work on small strings instead of large strings would outweigh the overhead of having to
continuously break up the string, run the function against it, and combine it back together when
we're done. In order to do this recursively, we can't just replace the first occurrence in the string and
then call the function again with the remainder of the string, because on a large string with a lot of
replacements we'd run out of stack space very quickly.

The other choice is to make our first replacement in the string, and then make a recursive call to the
beginning half of the string, followed by a recursive call to the rest of the string. This will keep us
from blowing the stack while allowing us to operate on smaller strings. The one thing you have to
watch out for when operating on the string in this fashion is having a matching piece of string
getting split between the two parts of the string that you're working with.

For example, let's say that the portion of string after the first match is "dogdogdog", and you're
looking to replace the word "dog". If you split this piece of string in half, the first half will be
"dogd" and the second half will be "ogdog". If you simply did a search and replace on the first and
second half of the string, you'd miss the word "dog" that got split between the two substrings. So
what you'll have to do is to perform a search and replace on the first half of the string, and then
perform a search and replace on the rest of the string, starting from the end position of the last
match we found.

This leads to some slightly tricky math, because in order for this function to work properly in a
recursive fashion, it will have to calculate and return the position of the last match in the string it's
working on. At first glance, this seems like a straightforward calculation, but as you're adding the
last positions together as they're being returned from the recursive calls, you have to make sure you
account for the fact that each recursive call will actually add one to the total of your last count. This
isn't because of the recursive call itself, it's actually because of the fact that when we pass a piece of
the string, we've already incremented the position count by one (because the new string starts at the
last position plus one), so we have to subtract one for each position that one of the recursive calls
returns. See the calculation of the retPos variable at the end of the function for more details.

As noted earlier, this isn't generally the best way to implement the @ReplaceSubstring function
(although the performance isn't terrible). It's included mainly as another example of writing a "safe"
recursive function, and it should help demonstrate some of the considerations you'll need to take
into account when writing your own recursive functions.

The [unfinished] LotusScript Book Page 25 of 156
 by Julian Robichaux

Matching String Patterns
LotusScript has a built-in function called "Like" that allows you to do basic string pattern matching.
However, it will only declare a match if the entire string matches the pattern. For example, if your
search pattern is "d?g", then "dog" will be a match, but "doggy" and "My dog doesn't bite" will not
be.

What follows is a group of functions that will allow you to mimic the Like function, but it will let
you search for a string pattern anywhere within a string. There's kind of a lot here, so make yourself
comfortable.

Script – Function for matching string patterns (main function)
Function FindWildcard (fullString As String, Byval searchString As String, _
startPos As Integer, endPos As Integer) As Integer
 '** find a substring within a string, between startPos and endPos,
'** using wildcard operators (*, ?, and #) in your search expression.
'** You can also search for lists or ranges of characters (or one of
'** the wildcard operators as a character) by enclosing them in
'** brackets []. The rules there are essentially the same as the

 '** rules for the Like operator, except you can additionally search for
'** a close bracket character inside a set of brackets by doubling it
'** (like [asdf]]] will search for the characters a, s, d, f, and].

 '** If a match is found, the return value will be True and the startPos
'** and endPos will be reset to give the start and end position of the
'** matching string

 Dim beginStar As Integer, qMarkOffset As Integer
 Dim newChar As String
 Dim ascChar As Integer
 Dim matchChar As String, lastMatchChar As String
 Dim isMatch As Integer
 Dim matchPos As Integer
 Dim getPos As Integer
 Dim retStartPos As Integer, retEndPos As Integer
 Dim ascStar As Integer, ascNum As Integer

Dim ascQuest As Integer, ascBracket As Integer
 Dim isLastMatchStar As Integer
 Dim bracketText As String
 Dim bracketEndPos As Integer
 Dim isBracketMatchInverse As Integer
 Dim i As Integer

 '** exit if there's no search string
 If (Len(fullString) = 0) Or (Len(searchString) = 0) Then
 FindWildcard = False
 startPos = 0
 endPos = 0
 Exit Function
 End If

 '** validate the startPos and endPos
 Select Case startPos
 Case Is < 1
 startPos = 1
 Case Is > Len(fullString)
 startPos = Len(fullString)
 End Select

 Select Case endPos
 Case Is < 1

The [unfinished] LotusScript Book Page 26 of 156
 by Julian Robichaux

 endPos = Len(fullString)
 Case Is < startPos
 endPos = startPos
 Case Is > Len(fullString)
 endPos = Len(fullString)
 End Select

 '** set the starting values of our variables
 FindWildcard = False
 isMatch = False
 ascStar = Asc("*")
 ascNum = Asc("#")
 ascQuest = Asc("?")
 ascBracket = Asc("[")
 isLastMatchStar = False

 '** if the searchString begins with wildcard characters, including *,
 '** then we can strip them from the searchString and avoid having to
 '** use them in our search every time (if we end up finding a match,
 '** we can adjust the start position at the end)
 If (Instr(searchString, "*") > 0) Then
 Do Until (matchPos > Len(searchString))
 matchPos = matchPos + 1
 matchChar = Mid$(searchString, matchPos, 1)
 If (matchChar = "*") Then
 beginStar = True
 Elseif (matchChar = "?") Then
 qMarkOffset = qMarkOffset + 1
 Else
 Exit Do
 End If
 Loop

 '** adjust searchString if we found anything
 searchString = Mid$(searchString, matchPos)
 End If

 For i = (startPos + qMarkOffset) To endPos
 newChar = Mid(fullString, i, 1)
 ascChar = Asc(newChar)

 '** check the character in the string against the next character

'** in the searchString
 If Not isMatch Then
 matchPos = 1
 retStartPos = 0
 matchChar = Mid$(searchString, matchPos, 1)
 lastMatchChar = ""
 isLastMatchStar = False
 End If

 Select Case Asc(matchChar)
 Case ascStar '* = 42
 '** handle this outside the Select Case statement, in case

'** we have a match plus a * plus nothing else, which means
'** we should match the rest of the string

 Case ascQuest '? = 63
 '** ? always matches exactly one character
 isMatch = True

 '** get the next searchString character
 lastMatchChar = matchChar

The [unfinished] LotusScript Book Page 27 of 156
 by Julian Robichaux

 isLastMatchStar = False
 matchPos = matchPos + 1
 matchChar = Mid$(searchString, matchPos, 1)

 Case ascNum '# = 35
 '** # always matches exactly one number
 If (Instr("0123456789", newChar) > 0) Then
 isMatch = True

 '** get the next searchString character
 lastMatchChar = matchChar
 isLastMatchStar = False
 matchPos = matchPos + 1
 matchChar = Mid$(searchString, matchPos, 1)
 Elseif isLastMatchStar Then
 '** if we were previously matching with "*", we

'** should still consider this to be a match, but
'** we shouldn't advance the matchPos

 isMatch = True
 Else
 isMatch = False
 End If

 Case ascBracket '[= 91
 '** if it's a bracketed match, search for any the

'** characters within the brackets
 isMatch = False
 bracketText = ExplodeBracket(Mid$(searchString, matchPos), _
 bracketEndPos, isBracketMatchInverse)

 If (Instr(bracketText, newChar) > 0) Then
 isMatch = True
 End If

 '** adjust the match, based on bracketMatchInverse
 isMatch = isMatch Xor isBracketMatchInverse

 If isMatch Then
 '** get the next searchString character
 lastMatchChar = "[]"
 isLastMatchStar = False
 matchPos = matchPos + bracketEndPos
 matchChar = Mid$(searchString, matchPos, 1)
 Elseif isLastMatchStar Then
 '** if we were previously matching with "*", we

'** should still consider this to be a match, but
'** we shouldn't advance the matchPos

 isMatch = True
 End If

 Case ascChar
 '** this should be an exact match
 isMatch = True
 '** get the next searchString character
 lastMatchChar = matchChar
 isLastMatchStar = False
 matchPos = matchPos + 1
 matchChar = Mid$(searchString, matchPos, 1)

 Case Else
 If isLastMatchStar Then
 '** if we were previously matching with "*", we

'** should still consider this to be a match, but

The [unfinished] LotusScript Book Page 28 of 156
 by Julian Robichaux

'** we shouldn't advance the matchPos
 isMatch = True
 Else
 isMatch = False
 End If

 End Select

 '** handle the special case where matchChar = *
 If (matchChar = "*") Then
 '** the * is always a match
 isMatch = True
 lastMatchChar = "*"
 isLastMatchStar = True
 '** get the next searchString character that's not

'** a wildcard
 Do Until (matchPos > Len(searchString))
 matchPos = matchPos + 1
 matchChar = Mid$(searchString, matchPos, 1)
 If (matchChar <> "*") And (matchChar <> "?") Then
 Exit Do
 End If
 Loop

 End If

 '** if we're in the middle of a match, make sure the startPos

'** variable is set, and check to see if we found a full match
 If isMatch Then
 '** set the return startPos, if necessary
 If (retStartPos = 0) Then
 retStartPos = i
 End If

 '** if we got to the end of the searchString, then we

'** found a match
 If (matchPos > Len(searchString)) Then
 If isLastMatchStar Then
 '** if the last character in the searchString

'** is a "*", then this matches everything
'** from startPos to the end of the line

 retEndPos = endPos
 Else
 retEndPos = i
 End If

 FindWildcard = True
 Exit For
 Elseif isLastMatchStar Then
 '** speed things up a little by finding the next

'** character match, if we're looking for *something
 getPos = GetFirstPossibleMatchPos(Mid$(fullString, i + 1),
Mid$(searchString, matchPos))
 If (getPos = 0) Then
 Exit For
 Else
 i = i + getPos - 1
 End If
 End If
 Else
 '** couldn't find a match, so let's advance to the

'** next possible spot
 getPos = GetFirstPossibleMatchPos(Mid$(fullString, i + 1), searchString)

The [unfinished] LotusScript Book Page 29 of 156
 by Julian Robichaux

 If (getPos = 0) Then
 Exit For
 Else
 i = i + getPos - 1
 End If
 End If

 Next i

 If FindWildcard Then
 If Not beginStar Then
 startPos = retStartPos - qMarkOffset
 '** Else startPos is whatever the user originally passed us
 End If
 endPos = retEndPos
 Else
 startPos = 0
 endPos = 0
 End If

End Function

Script – GetFirstMatchPos function (helper for main FindWildcard function)
Function GetFirstPossibleMatchPos (fullString As String, searchString As String) As
Integer
 '** get the first position of a possible match within fullString, based on
 '** the wildcard match specifications in searchString
 Dim matchPos As Integer
 Dim matchChar As String
 Dim ascMatchChar As Integer
 Dim bracketText As String
 Dim searchPos As Integer
 Dim firstSearchPos As Integer
 Dim ascStar As Integer, ascNum As Integer

Dim ascQuest As Integer, ascBracket As Integer
 Dim i As Integer

 '** exit early if we got a bogus string
 If (Len(fullString) = 0) Then
 GetFirstPossibleMatchPos = 0
 Exit Function
 End If

 '** initialize the variables
 ascStar = Asc("*")
 ascNum = Asc("#")
 ascQuest = Asc("?")
 ascBracket = Asc("[")

 '** start searching
 firstSearchPos = 0
 matchPos = 1

 Do Until (matchPos > Len(searchString))
 matchChar = Mid$(searchString, matchPos, 1)
 ascMatchChar = Asc(matchChar)

 Select Case ascMatchChar
 Case ascStar
 '** loop
 Case ascQuest
 '** loop

The [unfinished] LotusScript Book Page 30 of 156
 by Julian Robichaux

 Case ascBracket
 '** if we're matching stuff inside brackets, get the

'** exploded bracket string and search for all the
'** characters inside

 bracketText = ExplodeBracket(Mid$(searchString, matchPos), 0, 0)
 For i = 1 To Len(bracketText)
 searchPos = Instr(fullString, Mid$(bracketText, i, 1))
 If (searchPos > 0) Then
 If (searchPos < firstSearchPos) Or (firstSearchPos = 0) Then
 firstSearchPos = searchPos
 End If
 End If
 Next
 Exit Do
 Case ascNum
 '** if we're looking for a number, look for the first

'** number in the string
 For i = 0 To 9
 searchPos = Instr(fullString, Cstr(i))
 If (searchPos > 0) Then
 If (searchPos < firstSearchPos) Or (firstSearchPos = 0) Then
 firstSearchPos = searchPos
 End If
 End If
 Next
 Exit Do
 Case Else
 '** we're just looking for a single character
 firstSearchPos = Instr(fullString, matchChar)
 Exit Do
 End Select

 matchPos = matchPos + 1
 Loop

 '** if we're at the end of the searchString, then we're either searching
'** for nothing or the entire searchString is just * or ?, so the first
'** possible match is the beginning of the string

 If (matchPos > Len(searchString)) Then
 GetFirstPossibleMatchPos = 1
 Exit Function
 End If

 GetFirstPossibleMatchPos = firstSearchPos

End Function

Script – ExplodeBracket (helper for main FindWildcard function)
Function ExplodeBracket (bracketString As String, retEndPos As Integer, isInverse As
Integer) As String
 '** Convert the given bracketed characters in a wildcard match string
 '** to a string of all characters that would count as a match.
 '** Returns the end position of the brackets, if the user wants them.
 '** Also returns whether the string match is an inverse match.
 Dim char As String
 Dim pos As Integer
 Dim i As Integer
 Dim isBracketRange As Integer
 Dim bracketStartRange As Integer, bracketEndRange As Integer

 '** if we're not looking at a bracketed string, just return
 If Not (Left$(bracketString, 1) = "[") Then
 retEndPos = 0

The [unfinished] LotusScript Book Page 31 of 156
 by Julian Robichaux

 isInverse = False
 ExplodeBracket = ""
 Exit Function
 End If

 '** save some information as static information, so we don't end up
 '** exploding the same bracket string over and over again
 Static lastString As String
 Static lastEndPos As Integer
 Static lastInverse As Integer
 Static lastResult As String

 '** if we're looking at the same thing we looked at last time,
 '** just return the same results from last time
 If (bracketString = lastString) Then
 retEndPos = lastEndPos
 isInverse = lastInverse
 ExplodeBracket = lastResult
 Exit Function
 Else
 lastString = bracketString
 End If

 If (Mid$(bracketString, 2, 1) = "!") Then
 '** if the first character is a "!", then we're finding anything
 '** that doesn't match the characters in the brackets
 pos = 3
 isInverse = False
 Else
 pos = 2
 isInverse = False
 End If

 '** initialize the variables and start going through the brackets
 retEndPos = 2
 isBracketRange = False

 Do Until (pos > Len(bracketString))
 char = Mid$(bracketString, pos, 1)

 Select Case char
 Case "]"
 If (Mid$(bracketString, pos + 1, 1) = "]") Then
 pos = pos + 1
 char = Mid$(bracketString, pos, 1)
 Else
 ' we're at the end of the brackets
 retEndPos = pos
 Exit Do
 End If
 Case "-"
 If (bracketStartRange >= 0) Then
 isBracketRange = True
 End If
 Case Else
 '** continue on
 End Select

 '** set the start and end range of the character(s) we're

'** looking for
 If isBracketRange And (char <> "-") Then
 '** if we're dealing with a range of characters, get the

'** start and end of the range and list them out

The [unfinished] LotusScript Book Page 32 of 156
 by Julian Robichaux

 If (Asc(char) > bracketStartRange) Then
 bracketEndRange = Asc(char)
 Else
 bracketEndRange = bracketStartRange
 bracketStartRange = Asc(char)
 End If

 For i = bracketStartRange To bracketEndRange
 ExplodeBracket = ExplodeBracket & Chr$(i)
 Next
 isBracketRange = False

 Elseif Not isBracketRange Then
 ExplodeBracket = ExplodeBracket & char
 End If

 '** advance the position and continue
 pos = pos + 1

 Loop

 '** if we got all the way to the end without finding the close bracket,
 '** just return the end of the string as the end of the brackets
 If (pos > Len(bracketString)) Then
 retEndPos = Len(bracketString)
 End If

 '** set the static variables for the next time
 lastEndPos = retEndPos
 lastInverse = isInverse
 lastResult = ExplodeBracket

End Function

Okay, let's start with the FindWildcard function. As input, it takes the string you want to search
("fullString"), the string pattern you're searching for ("searchString"), and the start and end positions
of the portion of fullString that you want to search ("startPos" and "endPos"). It returns a Boolean
value indicating whether or not a match was found in the string, and if a match was found, then
startPos and endPos are set to the values of the starting and ending positions of where the match
was found within fullString. This is important because if we're matching a pattern like "d*g", we
don't know how long the matching string is going to be (it could be "dog", "doing", or "do the
shag").

The function starts with some error checking, to make sure our initial startPos and endPos numbers
aren't going to cause errors. We also gain a little efficiency by stripping any wildcard characters
from the beginning of the pattern we're looking for, because a * or ? will always match anything, so
there's no need to keep trying to match those. We then start trying to match characters in the string.

Every time we find a match, we'll advance our position in the pattern and look at the next character
in fullString. We keep going until we're either at the end of the pattern (which means we found a
match and our search is over), or a match condition is negative. If we're not in the middle of a
match, then we can speed things up by using the GetFirstPossibleMatchPos function. That function
finds the next possible match in fullString by finding the next occurrence of the first character (or
characters) that we're matching in the pattern. For example, if the pattern is "d*g", it will find the
next "d" in fullString; if the pattern is "[1-9] course meal", it will find the next 1, 2, 3, …, 9 in

The [unfinished] LotusScript Book Page 33 of 156
 by Julian Robichaux

fullString. Using this function helps us from having to step through every single character in the
string while we're matching.

The special case when we're matching is when there are multiple characters enclosed in brackets.
The bracketed characters can be either a list of characters, a range of characters, or a combination of
the two, and the user can optionally choose to search for things that aren't in the brackets by using
an exclamation point. In order to help us with this situation, we have the ExplodeBracket function,
which "explodes" the bracketed expression into a string of all the characters represented by the
expression, so we can use a simple Instr to determine if a character matches the bracketed
expression.

Because there's a lot going on in this function, there are a few efficiencies built-in to make sure it
doesn't run too slowly when operating on large strings. First, the GetFirstPossibleMatchPos function
helps us avoid having to examine every single character in the string while we're searching. The
fewer potential matches in the string, the more efficiency we gain. The second thing that speeds
things up is checking for a character match using the numeric ASCII value of the character instead
of the string representation. This is sped up even more by the fact that we store the ASCII value of
the special characters (*, ?, #, and [) in variables at the beginning of the function, so we don't have
to keep figuring out what they are every time we're looking at a character. Third, we try to "jump
ahead" as much as possible when we're matching a * in the string pattern. We do this by stripping
the * from the beginning of a pattern, if one exists, and when we run into a * in the middle of a
pattern, we use GetFirstPossibleMatchPos to find the next character, instead of stepping through the
string character by character until we find it.

I've also experimented with using Static variables in the ExplodeBracket function, so if there's only
one bracketed term inside in the pattern, we won't have to "re-explode" the term every time we look
at it. However, while stress testing the functions, use of Static variables for this purpose didn't have
any noticeable impact on the performance of the function.

Replacing Wildcard Patterns
Now that we have a function that finds wildcard patterns in a string, we can extend the functionality
of some of our other string handling functions (StringLeft, StringRight, etc.) to handle wildcard
cases as well. Here's a modification of ReplaceSubstring that uses the FindWildcard function.

Script – ReplaceSubstringWildcard
Function ReplaceSubstringWildcard (Byval fullString As String, oldString As String,
newString As String) As String
 '** ReplaceSubstringWildcard, using the FindWildcard function
 On Error Goto processError

 Dim tempString As String
 Dim tempString2 As String
 Dim startPos As Integer, endPos As Integer

 '** If the user passes us bogus values, just exit
 If (fullString = "") Or (oldString = "") Then
 ReplaceSubstringWildcard = fullString
 Exit Function
 End If

 '** initialize the variables

The [unfinished] LotusScript Book Page 34 of 156
 by Julian Robichaux

 tempString = fullString
 startPos = 1
 endPos = Len(tempString)

 '** initialize tempString2, to speed things up a little
 If ((Len(fullString) * Len(NewString)) > 32000) Then
 tempString2 = Space$(32000)
 Else
 tempString2 = Space$(Len(fullString) * Len(NewString))
 End If
 tempString2 = ""

 '** get all the matches in the string, building a new string as we go
 Do While (startPos > 0)
 If FindWildcard(tempString, oldString, startPos, endPos) Then
 tempString2 = tempString2 & Left$(tempString, startPos - 1) & newString
 tempString = Mid$(tempString, endPos + 1)
 startPos = 1
 endPos = Len(tempString)
 End If
 Loop

 '** add anything that's left in the original string to the end of the
'** return string

 tempString2 = tempString2 & tempString

 ReplaceSubstringWildcard = tempString2
 Exit Function

processError:
 '** error 228 is String Too Large
 Dim errMess As String
 errMess = "Error " & Err & ": " & Error$
 ReplaceSubstringWildcard = fullString
 Exit Function

End Function

Here you can see why it was so important to return the beginning and the ending position of the
match, so that we can replace the proper characters. Because of the nature of the FindWildcard
function, we can actually use this function as a full replacement for the ReplaceSubstring function
that we wrote earlier. However, it will run more slowly because of the extra processing that the
FindWildcard function introduces.

Just for fun, here's the recursive version of the ReplaceSubstringWildcard function:

Script – ReplaceSubstringWildcardRecursive
Function ReplaceSubstringWildcardRecurs (Byval fullString As String, oldString As
String, _
newString As String, retPos As Integer) As String
 '** ReplaceSubstringWildcardRecurs, using the FindWildcardMatch2 function
 On Error Goto processError

 Dim tempString As String
 Dim tempString2 As String
 Dim tempString3 As String
 Dim lenOldString As Integer
 Dim startPos As Integer, endPos As Integer
 Dim lastPos As Integer, lastPos2 As Integer
 Dim halfPos As Integer, offset As Integer

The [unfinished] LotusScript Book Page 35 of 156
 by Julian Robichaux

 Dim tempLeft As Integer

 '** If the user passes us bogus values, just exit
 If (fullString = "") Or (oldString = "") Then
 ReplaceSubstringWildcardRecurs = fullString
 Exit Function
 End If

 '** initialize the variables
 tempString = fullString
 lenOldString = Len(oldString)
 startPos = 1
 endPos = Len(tempString)

 If FindWildcard(tempString, oldString, startPos, endPos) Then
 tempString = Left$(fullString, startPos - 1) & newString
 tempString2 = Mid$(fullString, endPos + 1)

 retPos = endPos
 halfPos = Len(tempString2) \ 2

 If (halfPos > lenOldString) Then
 tempString3 = ReplaceSubstringWildcardRecurs(Left$(tempString2, halfPos),
oldString, newString, lastPos)
 If (lastPos = 0) Then
 offset = 1
 tempLeft = 0
 Else
 offset = lastPos + 1
 tempLeft = Len(tempString3) - (halfPos - (offset - 1))
 End If
 tempString3 = Left$(tempString3, tempLeft)
 Else
 offset = 1
 End If

 tempString2 = ReplaceSubstringWildcardRecurs(Mid$(tempString2, offset),
oldString, newString, lastPos2)

 If (lastPos2 > 0) Then
 retPos = endPos + (offset - 1) + lastPos2
 Elseif (lastPos > 0) Then
 retPos = endPos + lastPos
 End If
 End If

 ReplaceSubstringWildcardRecurs = tempString & tempString3 & tempString2

 Exit Function

processError:
 '** error 228 is String Too Large
 Dim errMess As String
 errMess = "Error " & Err & ": " & Error$
 Print errMess
 ReplaceSubstringWildcardRecurs = fullString
 Exit Function

End Function

The [unfinished] LotusScript Book Page 36 of 156
 by Julian Robichaux

Like the previous recursive ReplaceSubstring function in this chapter, this particular function
doesn't run quite as quickly as the non-recursive version, but it's interesting to see how the function
is structured.

Finding the First and Last Occurrence of a String Pattern
We don't really have to write a pattern-matching version of the Instr function, because that is
essentially what the FindWildcard function is. If you wanted to write a wrapper function for
FindWildcard in order to mimic the syntax more accurately, though, you could write something like
this:

Script – Wrapper function for FindWildcard, which mimics Instr syntax
Function InstrWildcard (startPos As Integer, fullString As String, _
searchString As String, compMethod As Integer) As Integer
 If (compMethod = 0) Or (compMethod = 4) Then

 InstrWildcard = FindWildcard (fullString, searchString, _
startPos, endPos)

Else
 InstrWildcard = FindWildcard (LCase(fullString), _

LCase(searchString), startPos, endPos)
End If

End Function

Notice that we sort of cheated on the fourth parameter for Instr, which indicates whether or not the
match is case- or pitch-sensitive. This is because we didn't write any pitch-sensitive code into the
original FindWildcard function, so all we can do is make the fullString and the searchString both
lowercase for any kind of case-insensitive search. You should be able to use the "Option Compare"
statement to specify pitch-sensitivity, though.

If you want to find the last occurrence of a string pattern within a string, you can make a few
modifications to the InstrLast function that we wrote earlier.

Script – Finding the last occurrence of a string pattern
Function FindWildcardLast (theString As String, searchString As String, _
startPos As Integer, endPos As Integer) As Integer
 '** find the last position of a substring within a string
 Dim stringLength As Integer
 Dim isFound As Integer
 Dim origStartPos As Integer, origEndPos As Integer
 Dim halfPos As Integer
 Dim wStartPos1 As Integer, wStartPos2 As Integer
 Dim wEndPos1 As Integer, wEndPos2 As Integer
 Dim posBefore As Integer, posAfter As Integer
 Dim lastStartPos As Integer, lastEndPos As Integer
 Dim tempString As String
 Dim beginStar As Integer, endStar As Integer
 Dim matchPos As Integer, matchChar As String

 stringLength = Len(theString)
 origStartPos = startPos
 origEndPos = endPos

 '** exit early if there's nothing to search
 If (stringLength = 0) Or (Len(searchString) = 0) Then
 FindWildcardLast = False
 Exit Function
 End If

The [unfinished] LotusScript Book Page 37 of 156
 by Julian Robichaux

 isFound = FindWildcard(theString, searchString, startPos, endPos)
 If Not isFound Then
 '** also exit early if searchString isn't in theString
 FindWildcardLast = False
 Exit Function
 Else
 '** if we're here, we found at least one match
 FindWildcardLast = True
 '** otherwise, find a point halfway between the last known

'** position of a match and the end of the string, and search
'** both segments

 halfPos = endPos + ((stringLength - endPos) \ 2)
 wStartPos1 = endPos + 1
 wStartPos2 = halfPos
 wEndPos1 = halfPos
 wEndPos2 = origEndPos

 If (FindWildcard(theString, searchString, wStartPos2, wEndPos2)) Then
 '** if we found at least one match in the last half of

'** the string, use that position as a basis for a
'** recursive search

 lastStartPos = wStartPos2
 lastEndPos = wEndPos2
 endPos = stringLength
 Else
 '** otherwise, search the first half
 If (FindWildcard(theString, searchString, wStartPos1, wEndPos1)) Then
 lastStartPos = wStartPos1
 lastEndPos = wEndPos1
 endPos = halfPos
 End If
 End If

 '** if we found a match in either segment, recurse and look again

'** within that segment
 If (lastStartPos > 0) Then
 If (lastEndPos = endPos) Then
 '** we're at the end
 startPos = lastStartPos
 Else
 tempString = Mid$(theString, lastEndPos + 1, endPos - lastEndPos + 2)
 startPos = 1
 endPos = Len(tempString)
 Call FindWildcardLast(tempString, searchString, startPos, endPos)
 If (startPos > 0) Then
 startPos = startPos + lastEndPos
 endPos = endPos + lastEndPos
 Else
 startPos = lastStartPos
 endPos = lastEndPos
 End If
 End If
 Else
 '** startPos and endPos should already be set
 End If
 End If

 '** make sure we didn't miss anything (which could happen if
 '** a match got split where we cut the string in half, or there's a
 '** match within the match we found)
 If (startPos + 1< origEndPos) Then
 lastEndPos = origEndPos

The [unfinished] LotusScript Book Page 38 of 156
 by Julian Robichaux

 If FindWildcard(theString, searchString, startPos + 1, lastEndPos) Then
 startPos = startPos + 1
 endPos = origEndPos
 Call FindWildcardLast(theString, searchString, startPos, endPos)
 End If
 End If

 '** now that we're at the end, check the searchString to see if
 '** it begins or ends with an asterisk (if it does, then we should
 '** return everything starting from the beginning of the string or
 '** everything ending at the end of the string)
 matchPos = 0
 Do Until (matchPos > Len(searchString))
 matchPos = matchPos + 1
 matchChar = Mid$(searchString, matchPos, 1)
 If (matchChar = "*") Then
 beginStar = True
 Elseif Not (matchChar = "?") Then
 Exit Do
 End If
 Loop

 matchPos = Len(searchString)
 Do Until (matchPos = 0)
 matchChar = Mid$(searchString, matchPos, 1)
 If (matchChar = "*") Then
 endStar = True
 Elseif Not (matchChar = "?") Then
 Exit Do
 End If
 matchPos = matchPos - 1
 Loop

 '** adjust if there was an asterisk at the beginning or the end
 If beginStar Then
 startPos = origStartPos
 End If

 If endStar Then
 endPos = origEndPos
 End If

End Function

This is a little more complex than the previous InstrLast function, although it uses the same logic.
The first difference is that we have to do an extra check for a match near the end of the function, in
case the term that we're searching for gets split when we're cutting the string in half, which could
cause us to incorrectly come up with no match. This is not a consideration with the original
InstrLast function, because in that case we knew exactly how long the search string was, and we
could account for that when we were splitting the string. With a wildcard search such as "d*g", our
matching search string could be anywhere from 2 to 30,000 characters long.

The second difference is that we have to adjust our start and/or end positions at the end of the
function, in case our search term begins or ends with a *.

The only caveat of the way this function is written is that there are certain cases where the last
match you find isn't quite the same as the last match you might find if you're just searching forwards
through the string. For example, if you're searching for the string pattern "d*g", and your string is

The [unfinished] LotusScript Book Page 39 of 156
 by Julian Robichaux

"dogdddddddddddog", then a forward search will give you a last string starting position of 4
(matching "dddddddddddog"), but the function above will give a position of 14 (matching just
"dog" at the end). That's because the function above actually ends up simulating a reverse search
through the string, not a forward search.

Fuzzy Searching (or, Approximate String Matching)
Another type of search that you might want to do within a string is a "fuzzy" search. This is usually
defined as a search that matches character combinations that are similar to the combination you're
looking for, in addition to exact matches. For example, you might want a search for "there" to match
similar combinations like "their" and "they're".

There are three common ways of implementing a fuzzy search to provide approximate string
matching capabilities. One way is to use a "dictionary" match, in which the word you're looking for
is first found in a dictionary list of words, and then all the string variations found in that dictionary
list are used in the search in addition to the word itself (this will allow you to look up "run",
"running", "ran", etc. in a single search). A second way to search is to use a variation of the
"Soundex" method, in which the letters of the word you want to search for are converted to a small
set of numbers (as is the string you're searching), and you check for a number match to see if your
fuzzy search is successful or not. A common variation of Soundex that's used for this purpose is
called "Monophone". A third way is to calculate the "edit distance" (sometimes called the
Levenschtein distance) between two strings, which is the number of letters that would have to be
added, deleted, or changed in order to convert one string to another. A popular implementation of
this is the Wu-Manber search.

In this chapter, we'll only be looking at the Soundex method for approximate string matching,
because it's easy to understand and implement, it's fast, and it generally provides good results.

Fuzzy Searching Using Soundex
The "Soundex" method of fuzzy searching was actually created during an early US Census (???) as
a way of matching common misspellings of surnames. It's still used quite often in name matching
situations, such as with genealogy, and even in the Notes Name and Address Book! Here are the
rules for converting a string to its Soundex equivalent.

1. Leading blanks in the input string are ignored.

2. The uppercase of the first letter in the string becomes the first character of the 4-character string.
If the first non-blank in the string is not a letter, the code "0000" is returned.

3. After the first letter, the letters A, E, H, I, O, U, W, and Y are ignored in producing the code.

4. The remaining letters are assigned a code as follows:

 B, F, P, V = 1
 C, G, J, K, Q, S, X, Z = 2
 D, T = 3
 L = 4
 M, N = 5

The [unfinished] LotusScript Book Page 40 of 156
 by Julian Robichaux

 R = 6

5. The code for the next letter is added to the output string unless it is a repeat of the code of the
previous source string character, in which case it's ignored.

6. The scan stops at the first non-alpha character (including blank), and the code is padded with "0"
if it ends up being less than 4 characters in length.

Here's a LotusScript implementation of this methodology:

Script – LotusScript version of the Soundex function
Function Soundex (Byval text As String) As String
 '** implementation of the traditional Soundex function
 Dim char As String
 Dim newString As String
 Dim convChar As String
 Dim i As Integer

 text = Trim(Ucase(text))
 char = Left$(text, 1)

 If (Asc(char) < Asc("A")) Or (Asc(char) > Asc("Z")) Then
 Soundex = "0000"
 Exit Function
 End If

 newString = char
 For i = 2 To Len(text)
 char = Mid$(text, i, 1)

 '** convert the next character in the string to its Soundex

'** equivalent
 Select Case char
 Case "A", "E", "H", "I", "O", "U", "W", "Y"
 convChar = ""
 Case "'"
 '** non-standard, but you get better name matches
 '** if you treat this as a valid character that can
 '** safely be ignored
 convChar = ""
 Case "B", "F", "P", "V"
 convChar = "1"
 Case "C", "G", "J", "K", "Q", "S", "X", "Z"
 convChar = "2"
 Case "D", "T"
 convChar = "3"
 Case "L"
 convChar = "4"
 Case "M", "N"
 convChar = "5"
 Case "R"
 convChar = "6"
 Case Else
 Exit For
 End Select

 '** if the converted character is different from the last

'** converted character in the string, append it
 If Not (Right$(newString, 1) = convChar) Then
 newString = newString & convChar

The [unfinished] LotusScript Book Page 41 of 156
 by Julian Robichaux

 End If

 '** once we've created a string of length 4, we're done
 If (Len(newString) = 4) Then
 Exit For
 End If
 Next

 '** add zeros to the end, in case the string isn't long enough
 newString = Left$(newString & "0000", 4)

 Soundex = newString

End Function

As noted in the function, we've included one non-standard element in our algorithm, and that is to
treat a single quote as a valid character that should be ignored (as opposed to a non-valid character
that should terminate the string). For example, think of the last name O'Leary or d'Angelo. Other
than the special case with the single quote, this function should give you the same output for a
character string as any other traditional implementation of the Soundex function does (like
@Soundex).

If we want to make a few modifications, we can extend this function to write our own simple fuzzy
search function. First, here's a slightly modified version of the Soundex function from above:

Script – Soundex function with minor modifications
Function SoundexPlus (Byval text As String, returnLength As Integer, _
allowSpaces As Integer, retLastPos As Integer) As String
 '** the Soundex function, with a few modifications
 Dim char As String
 Dim newString As String
 Dim convChar As String
 Dim i As Integer

 text = Trim(Ucase(text))
 char = Left$(text, 1)

 If (Asc(char) < Asc("A")) Or (Asc(char) > Asc("Z")) Then
 SoundexPlus = "0000"
 retLastPos = 0
 Exit Function
 End If

 '** initialize newString
 If (returnLength = 1) Then
 SoundexPlus = char
 retLastPos = 1
 Exit Function
 Else
 newString = Space$(returnLength)
 newString = char
 End If

 For i = 2 To Len(text)
 char = Mid$(text, i, 1)

 '** convert the next character in the string to its Soundex

'** equivalent
 Select Case char
 Case "A", "E", "H", "I", "O", "U", "W", "Y"

The [unfinished] LotusScript Book Page 42 of 156
 by Julian Robichaux

 convChar = ""
 Case "'", "-"
 '** string concatenation characters that we can ignore
 convChar = ""
 Case "B", "F", "P", "V"
 convChar = "1"
 Case "C", "G", "J", "K", "Q", "S", "X", "Z"
 convChar = "2"
 Case "D", "T"
 convChar = "3"
 Case "L"
 convChar = "4"
 Case "M", "N"
 convChar = "5"
 Case "R"
 convChar = "6"
 Case " ", Chr(9), Chr(13), Chr(10)
 If allowSpaces Then
 convChar = ""
 Else
 Exit For
 End If
 Case Else
 Exit For
 End Select

 '** if the converted character is different from the last

'** converted character in the string, append it
 If Not (Right$(newString, 1) = convChar) Then
 newString = newString & convChar
 End If

 '** once we've created a string of the length we want, we're done
 If (returnLength > 0) And (Len(newString) = returnLength) Then
 Exit For
 End If
 Next

 '** add zeros to the end, in case the string isn't long enough
 If (returnLength > 0) And (Len(newString) < returnLength) Then
 For i = (returnLength - Len(newString)) To returnLength
 newString = newString & "0"
 Next
 End If

 '** calculate retLastPos
 If (i <= Len(text)) Then
 retLastPos = i
 Else
 retLastPos = Len(text)
 End If

 '** and return
 SoundexPlus = newString

End Function

The enhancements in this function are that it allows you to specify the length of your return
Soundex string (if you want something different than the standard 4-character return string), it
allows you to specify whether or not you want to include spaces as valid characters (instead of
terminating characters), and it returns the position of the last character used to create the Soundex

The [unfinished] LotusScript Book Page 43 of 156
 by Julian Robichaux

string. The position of the last character is important for the same reason it's important in the
FindWildcard function: if we want to extend this function for use in the other string functions we've
been using in this chapter, we'll need to know how long the original string we're dealing with is,
because it's not going to be a fixed length.

Here's an example of using this function in a modified version of the Instr function:

Script – An implementation of the Instr function, using Soundex for fuzzy matches
Function InstrSoundex (startPos As Integer, fullString As String, _
searchString As String, allowSpaces As Integer, lastPos As Integer) As Integer
 '** get the Instr position of the first Soundex match
 Dim tempString As String
 Dim soundexSearch As String
 Dim ssLength As Integer
 Dim ssStart As Integer
 Dim pos As Integer
 Dim i As Integer

 '** initialize the variables
 tempString = Ucase(fullString)
 soundexSearch = SoundexPlus(searchString, 0, allowSpaces, 0)
 ssLength = Len(soundexSearch)
 ssStart = Asc(Left$(soundexSearch, 1))
 InstrSoundex = 0
 lastPos = 0

 '** start searching from the first possible match, if one exists
 pos = Instr(startPos, tempString, Chr$(ssStart))
 If (pos = 0) Then
 Exit Function
 End If

 '** if we got this far, start searching the string for a Soundex match,
 '** and return as soon as we found one
 For i = pos To Len(tempString)
 If (Asc(Mid$(tempString, i, 1)) = ssStart) Then
 If (SoundexPlus(Mid$(tempString, i), ssLength, allowSpaces, lastPos) =
soundexSearch) Then
 InstrSoundex = i
 Exit For
 End If
 End If
 Next

End Function

This will search for the first Soundex match of the search string within the string, and will return
both the start and end position of the first match. If you don't particularly care about the end
position, you can just pass a number as the lastPos variable.

This particular implementation of the function searches the string character by character for a
match, although you could easily change it to perform repetitive Instr calls as well. Both methods
are quite fast, in this case.

The [unfinished] LotusScript Book Page 44 of 156
 by Julian Robichaux

Converting Double-Byte and Single-Byte Strings
Earlier in the chapter, we discussed the difference between double-byte and single-byte
representations of strings, and how that can cause problems if you are expecting one and get the
other. Here are two functions that allow you to go between the two representations.

Script – Convert Single-byte string to Double-byte
Function DoubleByteToSingleByte (sbString As String) As String
 Dim newLen As Long
 Dim returnString As String
 Dim i As Integer

 newLen = Len(sbString) * 2

 '** initialize the returnString
 returnString = Space$(newLen)
 returnString = ""

 For i = 1 To newLen
 returnString = returnString & Midb$(sbString, i, 1)
 Next

 DoubleByteToSingleByte = returnString

End Function

Script – Convert Double-byte string to Single-byte
Function DoubleByteToSingleByte (dbString As String) As String
 Dim newLen As Long
 Dim returnString As String
 Dim i As Integer

 '** the single-byte return string will be half the length
 '** of the double-byte string, rounded up
 newLen = Cint(Fix(Len(dbString) / 2)) + (Len(dbString) Mod 2)
 returnString = Space$(newLen)

 For i = 1 To Len(dbString)
 Midb(returnString, i) = Mid$(dbString, i, 1)
 Next

 DoubleByteToSingleByte = returnString

End Function

These function names are a little deceiving, because LotusScript always stores a string as a double-
byte string, regardless of what data is in it. What these functions actually do is perform the
necessary conversions if you happen to read data into a string variable in the wrong format. This
can happen if you're reading information from a file, and you're expecting Unicode and you get
ASCII, or vice versa.

Reading Large Strings from Form Fields
You may occasionally find that a field in a form has more string data than you can fit into a
LotusScript string. This will happen if you try to read certain pieces of information from documents
in the LOG.NSF file on a server (like the "Events" field in the "Miscellaneous Events" form). Here's
a way around that:

The [unfinished] LotusScript Book Page 45 of 156
 by Julian Robichaux

Script – Reading large strings from form fields
Function GetLargeTextField (doc As NotesDocument, fieldName As String) As Variant
 '** For a text field that's larger than 32K, this function will
'** return the field contents as two elements of a string array:
'** the first element will be the first 32K of data, and the second
'** element will be the rest.

 On Error Goto processError

 Dim eString1 As Variant, eString2 As Variant
 Dim largeTextString(0 To 1) As String

 eString1 = Evaluate(|@Left(| & fieldName & |; 32000)|, doc)
 eString2 = Evaluate(|@If(@Length(| & fieldName & |) > 32000; @Right(| & fieldName &
|; @Length(| & fieldName & |) - 32000); "")|, doc)

 largeTextString(0) = eString1(0)
 largeTextString(1) = eString2(0)

 GetLargeTextField = largeTextString

 Exit Function

processError:
 LastError$ = "Error " & Cstr(Err) & ": " & Error$
 largeTextString(0) = ""
 largeTextString(1) = ""
 GetLargeTextField = largeTextString
 Exit Function

End Function

This function will only work in R5 the way it was written, because earlier releases of Notes required
the formulas in Evaluate statements to be known at the time the script is compiled, so you can't use
the unknown "fieldName" variable in the formula. However, if you know the field that you'll be
reading when you're writing the script, you could simply hard-code the field name in the formula.

The [unfinished] LotusScript Book Page 46 of 156
 by Julian Robichaux

Arrays and Lists
Arrays and lists are structured collections of data elements. If the array or list is defined as a Variant
array or list, then it can hold many different types of data; otherwise, it will hold multiple items of
the same data type or class.

The native LotusScript functions for dealing with arrays and lists are:

Function/Statement Usage Example

ArrayAppend (R5)

Creates a new array by adding the
contents of one array to the end of
a second array.

ArrayReplace (R5)
Copies an array element by
element to the result array.

ArrayGetIndex
(R5)

Searches for a value in an array,
and returns the number of the first
matching array element it finds.

Erase

Deletes an element of a list, or
removes all contents of an array
or a list.

FullTrim (R5)
Removes empty entries from an
array.

IsArray

Returns a Boolean value
indicating whether or not the
given variable or expression is an
array.

IsElement

Returns a Boolean value
indicating whether or not the
given value is a Tag in the given
list. If you are looking for a String
value, this search will be case-
sensitive, unless "Option
Compare Nocase" is in effect.

IsList

Returns a Boolean value
indicating whether or not the
given variable or expression is a
list.

The [unfinished] LotusScript Book Page 47 of 156
 by Julian Robichaux

LBound

Returns the lower bound for an
array. You can optionally indicate
which dimension of the array you
want the lower bound for.

ListTag

Returns the name of the Tag for
the list element currently being
processed by a ForAll loop.

ReDim
Declares or resizes a dynamic
array.

UBound

Returns the upper bound for an
array. You can optionally indicate
which dimension of the array you
want the upper bound for.

Using Lists
Declaring and using lists is generally easier than doing the same with an array, because lists are
partially searchable (using the IsElement function), and they can resize automatically. To create a
new list, you use the syntax:

Dim listName List As DataType

where "listName" is the name of your variable, and "DataType" is the data type you want to use.
For example, this will create a String list:

Dim myList List As String

Initially, the list will have no data and no elements, but you can add an element by simply coming
up with a unique "Tag" for your element, and entering the data. For example:

myList(1) = "The number 1"
myList("Two") = "The number 2"

The Tag (in the example above, the Tags are 1 and "Two") can be any native LotusScript data type,
regardless of the way the list was defined, and you can mix Tag data types within a list – normally
you won't want to mix them, but you can. If an item with that Tag already exists in the List, then the
item will be overwritten; if an item with that Tag doesn't already exist, then a new List element will
be created.

To refer to an element in a list, you simply use its Tag as an identifier, like this:

myString$ = myList("Two")

One thing to watch out for with Tags: if "Option Compare Nocase" is in effect for your script, then
the list element myList("A") will be the same as myList("a"). If it's not, which is the default case,

The [unfinished] LotusScript Book Page 48 of 156
 by Julian Robichaux

then myList("A") and myList("a") will be different elements. If you want your list Tags to be non-
case sensitive, but you don't want to turn "Option Compare Nocase" on, you should make sure to
create and refer to your Tags exactly the same time throughout your script, or you should always
create and refer to them in all upper- or all lower-case.

To remove an element in a list, you can use the Erase function. Be very careful, though, because
this command will remove the element in the list with a Tag of "Two":

Erase myList("Two")

but this command will remove all elements of the list:

Erase MyList()

Also, if you try to remove or refer to an element that doesn't exist in the list, you will get an error
120.

Using Fixed Arrays
A fixed array is an array that has a fixed number of elements and dimensions, which are set when
the array is defined. For example:

Dim myArray(5) As String

will (by default) create an array with 6 elements (0 to 5), and all elements will be of the String data
type. Here are some notes about array creation:

• By default, the first element (the lower bound) of an array is element zero (0). This can be
overridden in one of two ways: either you can define the lower bound in the array definition,
with a statement like "Dim myArray (1 To 5)", which will set the lower bound to 1 and the
upper bound to 5; or you can use Option Base statement to set the default lower bound to
either zero or one.

• The upper and lower bounds (also referred to as the "subscript" bounds) of an array can be
any number that is a valid Integer in LotusScript.

• An array that is defined with no upper or lower bounds is a dynamic array, which will be
discussed shortly.

• An array can have up to 8 dimensions, with each dimension being a comma-separated value
in the array definition. For example, myArray(5, 2) is a two-dimensional array.

• All elements in an array are initialized to whatever the default value is for the data type of
the array. So the array declaration "Dim myArray(0 To 5) As Integer" will create an array
with all elements equal to zero, until they are assigned values explicitly.

Assigning and reading elements of an array is the same as assigning and reading elements of a list:
you reference the element with the element number, which is the same as the list Tag except it is
always an Integer value. For example:

The [unfinished] LotusScript Book Page 49 of 156
 by Julian Robichaux

myArray(3) = "The quick brown fox"
someString$ = myArray(3)

You can't really erase an element of an array; all you can do is explicitly set the element to a value
that is in the range of the data type you're using. If you use the Erase function on a fixed array, it
will reinitialize all the elements of the array back to the initial state for the data type you're using.

Using Dynamic Arrays
A dynamic array is an array that can be resized. You cannot change a fixed array to a dynamic
array; the array has to be defined as a dynamic array in one of two ways, either:

Dim dynamicArray() As String

in which the array is defined with no upper or lower bounds, or like this:

Redim dynamicArray(0) As String

in which you use the Redim statement to define the array. To change the bounds of a dynamic array,
you use the Redim statement. You will normally want to use the Preserve option with Redim,
because that will keep the existing elements of your array intact – without the Preserve option, the
array will be resized, but all of the array elements will be reinitialized. For example, look at the
following script fragment:

Redim dynamicArray(0 To 1) As String
dynamicArray(0) = "zero"
dynamicArray(1) = "one"
Redim dynamicArray(0 To 2) As String

At the end of the fragment, the array will have 3 elements instead of the original 2, but all the
elements will have been reinitialized (and the assignments you just made will have been lost).
However, if you change the last line to:

Redim Preserve dynamicArray(0 To 2) As String

then the Preserve option will keep all the existing element assignments as-is. The only time you will
lose data with the Preserve option of Redim is if you resize the array to a smaller size than it used to
be, in which case the elements that are no longer within the legal bounds of an array will go away.

You can use Redim to change either the upper or the lower bound of an array. For example, you
could do something like this:

Redim dynamicArray(0) As String
Redim dynamicArray(-1 To 0) As String

which would give you an extra element at the lower end of the array. If you use the Preserve option
with Redim, however, you can only change the upper bound.

Unfortunately, you cannot use the Redim statement to change the data type of an array.

You should keep in mind that Redim is an "expensive" operation in terms of the efficiency of your
script. Every time you resize an array, LotusScript has to reallocate memory, and if you do that
many times in a script you will notice a performance hit. When possible, you should try to

The [unfinished] LotusScript Book Page 50 of 156
 by Julian Robichaux

approximate the final size of your dynamic array ahead of time, and adjust the size as few times as
possible.

One final note: if you use the Erase statement against a dynamic array, all the elements will be
removed, and you will be left with an array with no elements.

Arrays and Lists of User-Defined Data Types and Classes
Besides creating arrays and lists of standard LotusScript data types (like Strings, Integers, etc.), you
can also create arrays and lists of user-defined data types. For example:

Type Book
 ISBN As Long
 Author As String
 Title As String
End Type

Dim bookList List As Book
Dim bookArray(0 To 10) As Book

This will create a list and an array of Book objects. To assign or retrieve any of the elements of the
Book type, you use dot-notation:

bookList(1).Author = "John Smith"
title2$ = bookArray(2).Title

In much the same way, you can create arrays and lists of classes:

Dim dbArray(3) As NotesDatabase
Set dbArray(0) = New NotesDatabase("", "names.nsf")
Print dbArray(0).FilePath

You can use either native LotusScript classes or user-defined classes. The normal rules of
construction and access apply.

Passing Arrays and Lists as Function Parameters and Results
Special rules apply if you want to use an array or a list as a function or sub parameter, or as the
result of a function.

• If you want to pass a list as a parameter, the parameter must be either a Variant or a list of
the same data type as the list you're passing. The exception is if you are passing a list of a
user-defined data type, in which case the parameter must be a list of the same user-defined
data type.

• If you want to pass an array as a parameter, the parameter must be either a Variant or an
array of the same data type as the array you're passing, with no upper or lower bounds
definitions. The exception is if you are passing an array of a user-defined data type, in which
case the parameter must be an array of the same user-defined data type.

• Arrays and lists that are passed as parameters are passed by reference. This means that if you
change the array or list data in the function or sub, the data in the original array or list gets
changed as well.

The [unfinished] LotusScript Book Page 51 of 156
 by Julian Robichaux

If you want to return an array or a list as the result of a function, you should declare the function as
type Variant. You cannot, however, return an array or list of a user-defined data type as the result of
a function. If you wish to pass this type of array or list back to the calling routine, then you must
return it as a parameter instead of a result.

Use Caution Passing Lists as Function or Sub Parameters
You should be very careful when you are passing lists around as function or sub parameters. Many
versions of Notes have problems passing lists more than once as a parameter, and as a result, you
can sometimes lose data or corrupt the list as the list is passed from the calling routine to the
function or sub and back to the calling routine. Consider the following script:

Script – Data loss passing lists as parameters
Sub Initialize
 Dim newlist As Variant
 Dim listsize As Integer

 newlist = CreateList
 listsize = CountList(newlist)

End Sub

Function CreateList () As Variant
 Dim thislist List As Integer
 thislist(1) = 1
 thislist(2) = 2
 thislist(3) = 3
 thislist(4) = 4
 thislist(5) = 5
 thislist(6) = 6

 CreateList = thislist

End Function

Function CountList (thislist As Variant) As Integer
 Forall stuff In thislist
 count% = count% + 1
 End Forall

 Forall things In thislist
 count2% = count2% + 1
 Print "Forall loop #1 counted " & count% & _

". Forall loop #2 is counting " & count2% & "..."
 If (count2% = 50) Then
 Print "Forall loop #2 exiting because a count of " & _

count2% & " was reached."
 Exit Forall
 End If
 End Forall

 CountList = count%
End Function

If you compile this agent and run it, you will see that in the CountList function, the first loop
through the list will return a count of 2, and the second loop through the list will loop forever if you
don't stop it.

The [unfinished] LotusScript Book Page 52 of 156
 by Julian Robichaux

If you need to pass lists back and forth to functions and subs, it is better to do this using a Global list
variable rather than as a function or sub parameter.

Copying Arrays and Lists
Normally, you can copy arrays and lists to Variant variables without problem. Copying to a Variant
will make an actual copy of the array or list (instead of creating a pointer), so after you've made
your copy, and changes to the original array or list will not affect the new copy.

The exception is an array or list of a user-defined data type, which cannot be treated as a Variant
and cannot be copied unless you copy each element of the array or list individually.

Using LotusScript Arrays with Evaluate and @Functions
One really nice thing that the designers of LotusScript did was to provide an automatic conversion
of LotusScript arrays to the list data type that is used on Forms. The following statements are valid,
and will result a Form fields that is a text list:

Dim myArray(3) As String
myArray(1) = "Some string"
Call doc.ReplaceItemValue("FormList1", myArray)

You can make number and date lists in the same way. This feature also allows you to easily use
arrays in @Functions, and call the Evaluate function in LotusScript to get the result. @Functions
provide a much richer set of functions for handling arrays than LotusScript does, so this can come
in very handy.

There are a few limitations that you should be aware of, though. One is that this functionality is
only available for LotusScript arrays, because LotusScript lists do not automatically convert to
Form field lists. Another is that Form field lists do not support mixed data types, so your array
shouldn't be a Variant array of mixed types. A related issue is that a Variant array that hasn't had
any elements initialized yet (or one that's just been cleared with the Erase statement) will be passed
as a single empty string.

Custom Routines
The rest of the chapter will consist of custom functions, subs, and scripts that you might find useful
when dealing with lists and arrays.

Convert String to List or Array
These functions will convert a string to a list or an array, based on a delimiter of your choosing.
They will produce a result similar to the @Explode function.

Script – String to List
Function StringToList (thisText As String, delim As String) As Variant
 '** convert a string to a list, separating at the specified delimiter.
 '** this is often easier to use than StringToArray, since you don't have
 '** to worry about dimensioning your return variable
 Dim templist List As String
 Dim tempstring As String
 Dim delimlength As Integer
 Dim pos As Integer
 Dim i As Integer

The [unfinished] LotusScript Book Page 53 of 156
 by Julian Robichaux

 tempstring = thisText
 delimlength = Len(delim)
 pos = Instr(1, tempstring, delim, 5)
 i = 0

 Do While (pos > 0)
 '** get the substring
 templist(i) = Left$(tempstring, pos - 1)

 '** reset the variables
 tempstring = Right$(tempstring, Len(tempstring) - pos - delimlength + 1)
 pos = Instr(1, tempstring, delim, 5)
 i = i + 1
 Loop

 '** make sure you get the stuff at the end of the string
 templist(i) = tempstring

 '** return the array as a result
 StringToList = templist

End Function

Script – String to Array
Function StringToArray (thisText As String, delim As String) As Variant
 '** convert a string to an array, separating at the specified delimiter
 Dim temparray() As String
 Dim tempstring As String
 Dim delimlength As Integer
 Dim pos As Integer
 Dim i As Integer

 tempstring = thisText
 delimlength = Len(delim)
 pos = Instr(1, tempstring, delim, 5)
 i = 0

 Do While (pos > 0)
 '** add a placeholder in the array for the new element
 Redim Preserve temparray(i) As String

 '** get the substring
 temparray(i) = Left$(tempstring, pos - 1)

 '** reset the variables
 tempstring = Right$(tempstring, Len(tempstring) - pos - delimlength + 1)
 pos = Instr(1, tempstring, delim, 5)
 i = i + 1
 Loop

 '** make sure you get the stuff at the end of the string
 Redim Preserve temparray(i) As String
 temparray(i) = tempstring$

 '** return the array as a result
 StringToArray = temparray

End Function

You can also create a similar function by calling the @Explode function directly:

The [unfinished] LotusScript Book Page 54 of 156
 by Julian Robichaux

Script – String to Array, using @Explode
Function StringToArrayEval (thisText As String, delim As String) As Variant
 '** convert a string to an array using the Evaluate function
 '** Keep in mind that if delim is multiple characters, then each
 '** of those characters is treated as a delimiter, not the whole
 '** word.
 Dim session As New NotesSession
 Dim db As NotesDatabase
 Dim doc As NotesDocument
 Dim var As Variant

 Set db = session.CurrentDatabase
 Set doc = New NotesDocument(db)

 Call doc.ReplaceItemValue("thisText", thisText)
 Call doc.ReplaceItemValue("delim", delim)

 StringToArrayEval = Evaluate("@Explode(thisText; delim)", doc)

 '** clean up the memory we used
 Set doc = Nothing
 Set db = Nothing

End Function

The main difference between the first two functions and the last one is that a multi-character
delimiter is treated differently. In the first two functions, a multi-character delimiter is treated as a
word, so that if you use "and" as a delimiter, the string will be broken up wherever the word "and"
appears. In the last function, a multi-character delimiter is treated as a group of single-character
delimiters, so that if you use "and" as a delimiter there, the string will be broken up wherever there's
an "a", "n", or "d". There are cases where both of these bits of functionality are desirable.

The first two functions are also much easier to modify, in case you need to customize the parsing
(like if you want to include the delimiter in the results or something like that).

Getting the Data Type of an Array or List
The LotusScript DataType function is useful for finding out what kind of data type a variable
contains. If you check an array or list for its data type, however, an additional number is added to
the DataType number, indicating whether the variable is a list, a dynamic array, or a fixed array.
Sometimes you just want to know what the data type is (regardless of whether it's an array or a list
or a scalar value), and the function below will do that for you.

Script – Get the data type of an array or list
Function ArrayDataType (a1 As Variant) As Integer
 '** determine the data type of an array or list
 Dim dType As Integer
 dType = Datatype(a1)

 Select Case dType
 Case Is >= 8704 :
 '** dynamic array
 dType = dType - 8704
 Case Is >= 8192 :
 '** fixed array
 dType = dType - 8192
 Case Is >= 2048 :

The [unfinished] LotusScript Book Page 55 of 156
 by Julian Robichaux

 '** list
 dType = dType - 2048
 Case Else :
 '** scalar value; no adjustment needed
 End Select

 ArrayDataType = dType
End Function

You can also simplify (or inline) this function by using a bitmask to strip the high bits (see the
chapter on Numbers for more discussion about bitmasking).

Script – Array or list data type using a bitmask
Function ArrayDataType2 (a1 As Variant) As Integer
 ArrayDataType2 = Datatype(a1) And 63
End Function

However, the first method is a little easier to understand, and it allows you to do a little more
customization of the function if you need to (like if you want to return something else if you're
checking a scalar value, or if you want to indicate both the data type and whether it's a list or an
array, or something like that).

Determining Whether or not an Array or List is Empty
Sometimes you need a way to determine whether or not an array or list is "empty". Part of that
determination depends on what you consider "empty" to mean. Let's look at a function that checks
for empty arrays or lists.

Script – Determine whether an array or list is empty
Function IsEmptyArray (a1 As Variant) As Integer
 '** determine whether or not the passed value is
 '** an empty array or list
 On Error Goto processError

 Dim checkVal As Variant

 '** calculate what an empty value for this array/list
 '** should be
 Select Case (Datatype(a1) And 63)
 Case 1 To 6, 11 :
 checkVal = 0
 Case 7 :
 checkVal = Cdat(0)
 Case 8 :
 checkVal = ""
 End Select

 '** and check all the elements of a1 to see if they match
 '** this value
 Forall stuff In a1
 '** uncomment this block out if you think that only lists with
 '** no elements should be considered empty
 'If Islist(a1) Then
 ' IsEmptyArray = False
 ' Exit Function
 'End If

 If Not (stuff = checkVal) Then
 IsEmptyArray = False

The [unfinished] LotusScript Book Page 56 of 156
 by Julian Robichaux

 Exit Function
 End If
 End Forall

 '** if we got all the way to the end, then a1 must have been empty
 IsEmptyArray = True
 Exit Function

processError:
 If (Err = 200) Then
 '** this is an "Attempt to access uninitialized array" error,
 '** which we can treat as a sign that a1 is empty
 IsEmptyArray = True
 Exit Function
 Else
 Print "Error " & Err & ": " & Error$
 IsEmptyArray = False
 Exit Function
 End If

End Function

First, we determine what an "empty" value is, based on the data type of the array or list we were
given. This will be either the uninitialized value of that data type, or Nothing (for variants, user-
defined types, classes, etc.). In this function, we call an array or list empty if all of its entries are
equal to the uninitialized data type value, or if it is an uninitialized dynamic array, which would fall
down to the error block. There's also a block of commented code that you can uncomment if you
want a list to be considered empty only if it contains no elements (similar to an uninitialized array).

Removing Empty Elements
You can use a similar logic in your code to write routines that remove empty elements from an
array or a list. You'll need two routines, though: one to handle arrays, and one to handle lists.

Script – Remove empty elements from an array
Function RemoveEmptiesInArray (a1 As Variant) As Variant
 '** remove all empty values in an array
 On Error Goto processError

 Dim checkVal As Variant
 Dim tempArray As Variant
 Dim count As Integer

 '** create an array that we can store our return values in
 If Not Isarray(a1) Then
 RemoveEmptiesInArray = a1
 Exit Function
 Else

 tempArray = a1
 count = Lbound(a1)
 End If

 '** calculate what an empty value for this array
 '** should be
 Select Case (Datatype(a1) And 63)
 Case 1 To 6, 11 :
 checkVal = 0
 Case 7 :
 checkVal = Cdat(0)
 Case 8 :

The [unfinished] LotusScript Book Page 57 of 156
 by Julian Robichaux

 checkVal = ""
 End Select

 '** check all the elements of a1 to see if they are empty or not
 Forall stuff In a1
 If Not (stuff = checkVal) Then
 tempArray(count) = stuff
 count = count + 1
 End If
 End Forall

 '** redimension the tempArray and return it to the user
 If (count > Lbound(a1)) Then
 Redim Preserve tempArray(Lbound(a1) To count - 1)
 Else
 Erase tempArray
 End If

 RemoveEmptiesInArray = tempArray
 Exit Function

processError:
 Print "Error " & Err & ": " & Error$
 RemoveEmptiesInArray = a1
 Exit Function

End Function

Script – Remove empty elements from a list
Sub RemoveEmptiesInList (a1 As Variant)
 '** remove all empty values in a list
 Dim checkVal As Variant

 '** make sure we're dealing with a list
 If Not Islist(a1) Then
 Exit Sub
 End If

 '** calculate what an empty value for this List
 '** should be
 Select Case (Datatype(a1) And 63)
 Case 1 To 6, 11 :
 checkVal = 0
 Case 7 :
 checkVal = Cdat(0)
 Case 8 :
 checkVal = ""
 End Select

 '** check all the elements of a1 to see if they are empty or not
 Forall stuff In a1
 If (stuff = checkVal) Then
 Erase a1(Listtag(stuff))
 End If
 End Forall

End Sub

In these examples, RemoveEmptiesInArray is a Function, and RemoveEmptiesInList is a Sub. The
routine that operates on arrays could also have easily been written as a Sub, simply by copying the
tempArray variable to the a1 variable that was originally passed. You should be careful if you try to

The [unfinished] LotusScript Book Page 58 of 156
 by Julian Robichaux

convert the routine that operates on lists to a Function, however, because of the potential problems
with lists passed as parameters (discussed earlier in this chapter).

There are two other "built-in" methods for removing empties. One is to use Evaluate to run the
@Trim function against an array. This is a very efficient method for removing empties from a text
list, but you can only use it against an array of Strings. If you're using R5 or higher, you can (and
probably should) use the FullTrim function to remove empties. It doesn't work on lists, though, and
if you have any "special" needs (like you have some extended definition of what it means to have an
empty element), then you'll want to write a routine like the ones listed here.

Removing Duplicate Elements of an Array or List
A similar function you may wish to write is one that removes duplicate elements in an array or list.
Below are routines that remove duplicates from arrays and lists.

Script – Remove duplicate entries from an array
Function RemoveDuplicatesInArray (a1 As Variant) As Variant
 Dim tempList List As Integer
 Dim returnArray As Variant
 Dim count As Integer

 '** make sure we're dealing with a list
 If Not Isarray(a1) Then
 Exit Function
 End If

 returnArray = a1
 count = Lbound(a1)

 '** copy the elements one-by-one to a temporary list;
 '** if the elements have already been copied over,
 '** they're duplicate values that can be erased
 Forall stuff In a1
 If Not Iselement(tempList(stuff)) Then
 tempList(stuff) = 0
 returnArray(count) = stuff
 count = count + 1
 End If
 End Forall

 '** resize the returnArray and send it back to the user
 If (count = Lbound(a1)) Then
 Erase returnArray
 Else
 Redim Preserve returnArray(0 To count - 1)
 End If

 RemoveDuplicatesInArray = returnArray

End Function

Script – Remove duplicate entries from a list
Sub RemoveDuplicatesInList (a1 As Variant)
 Dim tempList List As Integer

 '** make sure we're dealing with a list
 If Not Islist(a1) Then
 Exit Sub
 End If

The [unfinished] LotusScript Book Page 59 of 156
 by Julian Robichaux

 '** copy the elements one-by-one to a temporary list;
 '** if the elements have already been copied over,
 '** they're duplicate values that can be erased
 Forall stuff In a1
 If Iselement(tempList(stuff)) Then
 Erase a1(Listtag(stuff))
 Else
 tempList(stuff) = 0
 End If
 End Forall

End Sub

As with the scripts for removing empty elements (and for the same reason), the routine that operates
on an array is a function, and the one that operates on a list is a sub. The logic is that you take each
item in the array or list that you are passed and copy it to a temporary list as a list tag. You can then
use the IsElement function to easily check the temporary list to see if it already contains that item,
and if it doesn't then the item is not a duplicate. The nice thing about using the IsElement function
in this capacity is that it observes whatever Option Case rules you happen to be following in your
script, so you can maintain consistency comparing string values.

Adding Two Arrays
When we talk about "adding" arrays here, were actually talking about concatenating a pair of arrays,
so that the elements of the second array are appended to the first array, resulting in an array that is
as long as the length of the first array plus the length of the second array. There are, of course, other
ways of adding arrays (such as concatenating the first element of the first array with the first
element of the second array, the second element of the first array with the second element of the
second array, etc.), but we're only concerned with appending right now.

If you're using R5 or higher, you can use the ArrayAppend function to achieve a similar result, but
this function has the advantage of being able to add a pair of arrays, lists, or scalar values (in any
combination) together, while ArrayAppend requires the first value to be an array and does not allow
lists.

Script – Adding two arrays, lists, or scalar values to get a new array
Function AddArrays (a1 As Variant, a2 As Variant) As Variant
 '** return a new array, consisting of the elements of a1,
 '** followed by the elements of a2
 On Error Goto processError

 Dim newArray As Variant
 Dim count As Integer
 Dim i As Integer

 '** start with a1
 If Isscalar(a1) Then
 '** if a1 is a scalar value, just add a single entry to

'** the new array
 Redim newArray(0)
 newArray(0) = a1
 count = 1
 Elseif Islist(a1) Then
 '** if a1 is a list, we'll want to convert to an array
 count = 0

The [unfinished] LotusScript Book Page 60 of 156
 by Julian Robichaux

 Forall stuff In a1
 Redim Preserve newArray(0 To count)
 newArray(count) = stuff
 count = count + 1
 End Forall
 Else
 '** otherwise, treat it like an array
 If (ArrayDataType(a1) = ArrayDataType(a2)) Then
 '** if a1 and a2 are the same data type, we can return

'** an array of that data type (our comparison is done
'** with the user-defined ArrayDataType function)

 newArray = a1
 count = Ubound(a1) + 1
 Else
 '** if we've got different data types, return a

'** variant array
 count = Lbound(a1)
 Redim newArray(Lbound(a1) To Ubound(a1))
 Forall stuff In a1
 newArray(count) = stuff
 count = count + 1
 End Forall
 End If
 End If

 '** and append a2 to the end
 If Isscalar(a2) Then
 '** scalar value; just add a single element
 Redim Preserve newArray(Lbound(newArray) To count)
 newArray(count) = a2
 Elseif Isarray(a2) Then
 '** array; so we only have to Redim the newArray once
 Redim Preserve newArray(Lbound(newArray) To count + (Ubound(a2) - Lbound(a2)))
 Forall stuff In a2
 newArray(count) = stuff
 count = count + 1
 End Forall
 Else
 '** list; so we have to keep redimensioning newArray
 Forall stuff In a2
 Redim Preserve newArray(Lbound(newArray) To count)
 newArray(count) = stuff
 count = count + 1
 End Forall
 End If

 AddArrays = newArray
 Exit Function

processError:
 '** if there was an error, just return an empty array
 Print "AddArrays Error " & Err & ": " & Error$
 Redim emptyArray(0) As Variant
 AddArrays = emptyArray
 Exit Function

End Function

There are a few things I'd like to point out in this function. First, after we check the data types of a1
and a2, if we determine that they are the same data type (and a1 is an array), we can simply create
the return array by setting the newArray variable equal to a1. The interesting part of this is that even

The [unfinished] LotusScript Book Page 61 of 156
 by Julian Robichaux

if a1 is a fixed array, newArray will end up being a dynamic array that we can resize later. Second,
if we redimension a dynamic array without explicitly assigning a data type to it, the array
automatically retains its current data type (which is handy, because we don't necessarily know in
advance what the data type is in this case). Also, we split up the way we append the items at the end
if a2 is a list or an array. This is because we can easily determine how many elements an array has,
which allows us to redimension newArray only once to allocate storage for all the elements of a2;
otherwise (for a list), we have to keep redimensioning newArray for each element of the list, which
is a much more expensive operation.

You can use @Functions to do the same type of thing, if you want:

Script – Using Evaluate and @Functions to add two arrays, lists, or scalar values
Function AddArraysEval (a1 As Variant, a2 As Variant) As Variant
 '** add two arrays or scalar values using @Functions
 Dim session As New NotesSession
 Dim db As NotesDatabase
 Dim doc As NotesDocument
 Dim var As Variant

 Set db = session.CurrentDatabase
 Set doc = New NotesDocument(db)

 Call doc.ReplaceItemValue("a1", a1)
 Call doc.ReplaceItemValue("a2", a2)

 AddArraysEval = Evaluate("a1 : a2", doc)

 '** clean up the memory we used
 Set doc = Nothing
 Set db = Nothing

End Function

One limitation here is that you can't use this function if either a1 or a2 is a List. Also, a1 and a2
have to be the same data type, or the Evaluate statement will fail. You could get around this by
rewriting the Evaluate statement as:

AddArraysEval = Evaluate("@Text(a1) : @Text(a2)", doc)

which is okay if you don't mind always getting String arrays as your function result.

Getting Common Elements of Two Arrays or Lists
Here's a function that will return a Variant array of elements that are common to a pair of arrays,
lists, or scalar values.

Script – Get common elements of two arrays, lists, or scalar values
Function SameArrayItems (a1 As Variant, a2 As Variant) As Variant
 '** return an array that has all the elements in array a1
 '** that are also in array a2
 On Error Goto processError

 Dim returnArray As Variant
 Dim tempList List As Integer
 Dim count As Integer

The [unfinished] LotusScript Book Page 62 of 156
 by Julian Robichaux

 '** convert a2 into a list, for easier searching
 If Isscalar(a2) Then
 tempList(a2) = 0
 Else
 Forall stuff In a2
 tempList(stuff) = 0
 count = count + 1
 End Forall
 End If

 '** initialize the return array
 Redim returnArray(0 To count)

 '** check all the elements in a1 against the new list we made
 count = 0
 If Isscalar(a1) Then
 If Iselement(tempList(a1)) Then
 returnArray(count) = a1
 count = count + 1
 End If
 Else
 Forall element In a1
 If Iselement(tempList(element)) Then
 returnArray(count) = element
 count = count + 1
 End If
 End Forall
 End If

 '** resize the return array down, so it will have the right
 '** number of elements
 If (count = 0) Then
 Erase returnArray
 Else
 Redim Preserve returnArray(0 To count - 1)
 End If

 '** give the returnArray back to the user
 SameArrayItems = returnArray
 Exit Function

processError:
 Print "Error " & Err & ": " & Error$
 Redim returnArray(0)
 Erase returnArray
 SameArrayItems = returnArray
 Exit Function

End Function

The trick here is to minimize the amount of times we step through each array or list (or scalar value,
which is treated as a single-valued array) in order to make our comparisons and achieve our result.
We can actually do this only once for each parameter, because we first convert the a2 parameter to a
list of zeros (which keeps the memory usage of the list as small as possible), using the elements of
a2 as list tags, and then we use the IsElement function to perform quick searches against that list.
This way, we only have to iterate through each array or list once, and we let IsElement take care of
all the searching.

If there are no matches, or if the function errors out (like if you pass an object as one of the
parameters or something), then the function returns an empty array.

The [unfinished] LotusScript Book Page 63 of 156
 by Julian Robichaux

Getting Different Elements of Two Arrays or Lists
The function to get different elements between two arrays or lists is a little more complicated than
the function to get common elements, because we have to check both arrays or lists for differences,
not just one. The implementation only adds a few more lines of code, though.

Script – Getting different elements of two arrays or lists
Function DifferentArrayItems (a1 As Variant, a2 As Variant) As Variant
 '** return an array that has all the elements in array a1
 '** array a2 that are different
 On Error Goto processError

 Dim returnArray As Variant
 Dim tempList List As Variant
 Dim count As Integer

 '** convert a2 into a list, for easier searching
 If Isscalar(a2) Then
 tempList(a2) = a2
 Else
 Forall stuff In a2
 tempList(stuff) = stuff
 count = count + 1
 End Forall
 End If

 '** initialize the return array
 Redim returnArray(0 To count)

 '** check all the elements in a1 against the new list we made
 count = 0
 If Isscalar(a1) Then
 If Iselement(tempList(a1)) Then
 Erase tempList(a1)
 Else
 returnArray(count) = a1
 count = count + 1
 End If
 Else
 Forall element In a1
 If Iselement(tempList(element)) Then
 Erase tempList(element)
 Else
 returnArray(count) = element
 count = count + 1
 End If

 '** make sure we have room in the returnArray
 If (count = Ubound(returnArray)) Then
 Redim Preserve returnArray(0 To count + 50)
 End If
 End Forall
 End If

 '** now add anything that's still left in tempList, which will be
 '** things in a2 that weren't in a1
 Forall leftover In tempList
 '** Listtag always returns a String, so we want to use the

'** list element instead
 'returnArray(count) = Listtag(leftover)
 returnArray(count) = leftover
 count = count + 1

The [unfinished] LotusScript Book Page 64 of 156
 by Julian Robichaux

 '** make sure we have room in the returnArray
 If (count = Ubound(returnArray)) Then
 Redim Preserve returnArray(0 To count + 50)
 End If
 End Forall

 '** resize the return array down, so it will have the right
 '** number of elements
 If (count = 0) Then
 Erase returnArray
 Else
 Redim Preserve returnArray(0 To count - 1)
 End If

 '** give the returnArray back to the user
 DifferentArrayItems = returnArray
 Exit Function

processError:
 Print "Error " & Err & ": " & Error$
 Redim returnArray(0)
 Erase returnArray
 DifferentArrayItems = returnArray
 Exit Function

End Function

This function starts off the same as the function that gets the common elements of two arrays, with
the small difference that the list that we create contains the actual data elements of a2, instead of
zeros. This makes the list a little bigger and a little less memory-efficient, but we'll need the
information in that format later as we're stepping through the list. As we check to see if any of the
elements of a1 are in the list, we can use the Erase function to remove common elements from the
list as we go – this is another nice thing about using a list to check the data elements, because you
can use Erase to delete individual components of a list without having to redimension or reorder the
list.

Finally, after we're done checking the elements of a1, we can take any remaining elements of the
temporary list (remember that all the common elements have already been removed) and add them
to our return array as well. As we're doing this, you'll see why we chose to store the data elements
of a2 as list elements and not just list tags, because the ListTag function always returns a String
value, and we want to populate our return array with elements that are the same data type as the
original arrays or lists.

One other thing you might notice in this function is that there's no good quick way of finding out
what the possible size of the return array is (we can't use Ubound – Lbound for the two parameters
we've been passed, because they're not necessarily arrays), so we end up having to redimension the
return array in our Forall loops. Instead of redimensioning the array for every single element that
we're adding, though, we're growing the array 50 elements at a time. This ends up being a lot more
efficient from a memory management standpoint, because redimensioning an array is an expensive
operation, so we want to do it as few times in the script as possible. At the end of the function, we
shrink the return array back down to whatever size it needs to be anyway, so there's no real penalty
for adding extra elements as we redimension.

The [unfinished] LotusScript Book Page 65 of 156
 by Julian Robichaux

Sorting Arrays
The subject of how to sort the elements of an array most quickly has fascinated programmers for
some time now. There are two things that you have to balance when you write an array-sorting
algorithm: you want to modify the elements of the array as little as possible, and you want to
examine the individual elements of the array as few times as possible. That being said, it's a lot
faster to look at an array element than it is to change an element, so you'll generally want to lean
towards the side of checking versus changing for the bulk of your algorithm.

While it's a lot of fun to try to create and refine your own sorting algorithm, you'll do best to use one
of the "classic" sorting algorithms in your programs for maximum efficiency. The two that I've
chosen to present here are the QuickSort algorithm and the Shell Sort algorithm, although there are
many others that will also work. For a good discussion about different sorting algorithms, along
with LotusScript implementations for them, take a look at the Lotus Redbook titled "Performance
Considerations for Domino Applications".

Please note that I am certainly not the original author of the sorting algorithms that follow, and in no
way am I trying to take credit for writing them. They are simply LotusScript implementations of
classic algorithms that are in the public domain.

Script – QuickSort algorithm for array sorting
Sub QuickSort (PassedArray As Variant, LowerBound As Integer, UpperBound As Integer)
 '** the classic QuickSort algorithm for sorting an array
 Dim CurValue As Variant
 Dim SwapValue As Variant
 Dim i As Integer
 Dim k As Integer

 '** if there's nothing to sort, don't do anything
 If (UpperBound <= LowerBound) Then
 Exit Sub
 End If

 CurValue = PassedArray(LowerBound)
 i = LowerBound
 k = UpperBound

 While (i < k)
 '** find a value on the low side that's greater than CurValue
 While (PassedArray(i) <= CurValue) And (i < UpperBound)
 i = i + 1
 Wend

 '** find a value on the high side that's smaller than CurValue
 While (PassedArray(k) > CurValue)
 k = k - 1
 Wend

 '** the two values we ended up with need to get swapped
 If (i < k) Then
 SwapValue = PassedArray(i)
 PassedArray(i) = PassedArray(k)
 PassedArray(k) = SwapValue
 End If
 Wend

 '** do one last swap, since we skipped PassedArray(LowerBound)

The [unfinished] LotusScript Book Page 66 of 156
 by Julian Robichaux

 SwapValue = PassedArray(LowerBound)
 PassedArray(LowerBound) = PassedArray(k)
 PassedArray(k) = SwapValue

 '** Now all the data on the low side of myArray(k) should be smaller

'** than CurValue, and all the data on the high side of myArray(k)
'** should be larger. We can use recursion to sort data on either
'** side of k.

 Call QuickSort (PassedArray, LowerBound, k - 1)
 Call QuickSort (PassedArray, (k + 1), UpperBound)

End Sub

Script – Shell Sort algorithm for sorting an array
Sub ShellSort (PassedArray As Variant)
 '** the classic ShellSort algorithm for sorting an array

 Dim i As Integer
 Dim k As Integer
 Dim LowerBound As Integer
 Dim UpperBound As Integer
 Dim TempValue As Variant
 Dim SwapValue As Variant

 LowerBound = Lbound(PassedArray)
 UpperBound = Ubound(PassedArray)

 '** start with elements that are half the length of the array apart
 k = (UpperBound - LowerBound + 1) \ 2

 Do While k > 0
 '** from the bottom of the array to the top, swap everything
 '** that's k elements apart and out of order
 For i = LowerBound To UpperBound - k
 If (PassedArray(i) > PassedArray(i + k)) Then
 TempValue = PassedArray(i)
 PassedArray(i) = PassedArray(i + k)
 PassedArray(i + k) = TempValue
 End If
 Next i

 '** now go back down the array, swapping again
 For i = UpperBound - k To LowerBound Step -1
 If (PassedArray(i) > PassedArray(i + k)) Then
 TempValue = PassedArray(i)
 PassedArray(i) = PassedArray(i + k)
 PassedArray(i + k) = TempValue
 End If
 Next i

 '** divide k in half and do it again, until we get down to 0
 k = k \ 2
 Loop

End Sub

Most of what I know about how these algorithms work is documented in the code comments above.
Both routines work quite fast, although the QuickSort algorithm is often just a tiny bit faster. Some
people like to use QuickSort because of the small increase in speed, while others like ShellSort
because it doesn't use recursion and you have no chance of blowing the stack when you use it.
Either one should work well for virtually any programming situation.

The [unfinished] LotusScript Book Page 67 of 156
 by Julian Robichaux

Numeric Functions
LotusScript has the following 5 numeric data types:

Data type Suffix Value range Size

Integer % -32,768 to 32,767 2 bytes

Long & -2,147,483,648 to 2,147,483,647 4 bytes

Single ! -3.402823E+38 to 3.402823E+38

smallest non-zero value is
1.175494351E-38

4 bytes

Double # -1.7976931348623158E+308 to
1.7976931348623158E+308

smallest non-zero value is
2.2250738585072014E-308

8 bytes

Currency @ -922,337,203,685,477.5807 to
922,337,203,685,477.5807

smallest non-zero value is .0001

8 bytes

All numeric variables initialize to a value of zero. If you do not need to use decimal places, you can
use an Integer or a Long data type. If you do need decimals, or if you are just dealing with numbers
larger than what a Long can handle, you can use Currency, Single, or Double (often, a numeric data
type with decimal places is called a "float").

If you are trying to store a smaller data type into a larger data type – for example, if you want to
store an Integer value in a Long variable – LotusScript will allow you to do this without any fuss
(this is a process known as "implicit casting"). If you want to go the other way and store a larger
data type in a variable of a smaller data type, LotusScript will actually allow you to do this
implicitly as long as the value will fit in the smaller data type. For example:

longVal& = 1000
intVal% = longVal&

will work without errors, but:

longVal& = 100000
intVal% = longVal&

will give an Error 6: Overflow, because the number 100,000 is larger than the biggest acceptable
Integer value. In practice, however, you will normally want to do some error checking before you

The [unfinished] LotusScript Book Page 68 of 156
 by Julian Robichaux

"downcast" from a larger data type to a smaller one. An easy way to do this is to define some
constants in the Declarations section of your script, and compare against those.

'** (in Declarations)
Const MAX_INTEGER = 32767
Const MAX_LONG = 2147483647
Const MAX_SINGLE = 3.402823E+38
Const MAX_DOUBLE = 1.7976931348623158E+308
Const MAX_CURRENCY = 922337203685477.5807

'** (in your script)
longVal& = 100000
If (longVal& <= MAX_INTEGER) Then
 intVal% = longVal&
End If

The advantage to using constants rather than the actual maximum number in the script is that you
don't have to type the maximum value numbers for a data type more than once in your script, which
will save you a lot of headaches and typos. It's also a lot easier to look at.

The native LotusScript functions for numeric manipulation are:

Function/Statement Usage Example

Abs
Returns the absolute value of a
number.

ACos

Returns the arccosine, in radians,
of a number between -1 and 1,
inclusive.

ASin

Returns the arcsine, in radians, of
a number between -1 and 1,
inclusive.

Atn
Returns the arctangent, in radians,
of a number.

Atn2

Returns the polar coordinate
angle, in radians, of a point in the
Cartesian plane.

Bin[$]
Returns the binary value of a
number (as a string).

CCur
Returns a value converted to
Currency.

CDbl
Returns a value converted to a
Double.

The [unfinished] LotusScript Book Page 69 of 156
 by Julian Robichaux

CInt
Returns a value converted to an
Integer.

CLng
Returns a value converted to a
Long.

Cos Calculates the cosine of an angle.

CSng
Returns a value converted to a
Single.

Exp
Returns the exponential (base e)
of a number.

Fix

Strips the decimal places from a
number and returns only the
integer portion.

Fraction
Returns only the decimal part of a
number.

Hex[$]
Returns the hex value of a number
(as a string).

Int
Returns an integer value that is
less than or equal to a number.

IsNumeric

Determines whether an expression
is numeric, or can be converted to
a numeric value. Keep in mind
that this doesn't necessarily mean
that something is already a
numeric value, because the string
"1234" will also return True.

Len

For a numeric variable or value,
returns the number of bytes used
to hold that value, as seen in the
table in the beginning of this
chapter.

LenB
For a numeric value, returns the
same as Len (above).

LenBP
For a numeric value, returns the
same as Len (above).

The [unfinished] LotusScript Book Page 70 of 156
 by Julian Robichaux

Log
Returns the natural (base e)
logarithm of a number.

Mod
Divides two numbers and returns
the remainder (modulus).

Oct[$]
Returns the octal value of a
number (as a string).

PI
Returns the mathematical constant
PI (3.14…).

Randomize
Initializes the internal random
number generator.

Rnd

Returns a random number greater
than 0 and less than 1 (multiply
the result by powers of 10 in order
to return larger numbers).

Round
Rounds a number to a specified
number of decimal places.

Sgn

Indicates whether a number is
positive (1), negative (-1), or zero
(0). Note that this does not return
a Boolean value.

Sin
Returns the sine, in radians, of an
angle.

Sqr
Returns the square root of a
number.

Tan
Returns the tangent, in radians, of
an angle.

Val
Converts a string value to a
number.

The [unfinished] LotusScript Book Page 71 of 156
 by Julian Robichaux

In addition, LotusScript provides the following functions for working with Boolean values:

Function/Statement Usage Example

And
Performs a conjunction on two
values (logical or bitwise).

Eqv
Performs an equivalence on two
values (logical or bitwise).

FALSE The Boolean value FALSE (0).

Imp
Performs an implication on two
values (logical or bitwise).

Not
Performs negation on a value
(logical or bitwise).

Or
Performs a disjunction on two
values (logical or bitwise).

TRUE

The Boolean value TRUE
(technically -1, although any non-
zero number is considered to be
TRUE, for comparison purposes).

Xor
Performs an exclusion on two
values (logical or bitwise).

Because LotusScript (as of R5) does not have a Boolean data type, you will normally store and pass
Boolean values around as Integers. There are a few things to keep in mind here:

• If you explicitly set a variable to True in LotusScript, its value is –1 (not 1, like in some
other languages). However, if you are determining whether a value or an expression
evaluates to True or False, any non-zero number evaluates to True.

• The Boolean operators shown above (And, Or, Xor, etc.) are both logical and bitwise
operators. This means that if you are operating on two strictly Boolean values, you will get
the expected Boolean result. However, if you are operating on one or more "non-Boolean"
values (like some non-zero number that evaluated to True), the comparison will be bitwise
(binary). For example, "True Xor True" evaluates to "False", but "20 Xor 5" evaluates to
"17" (which is True in the Boolean world). More on binary operations later in the chapter.

The [unfinished] LotusScript Book Page 72 of 156
 by Julian Robichaux

Mathematical Operators and Operator Precedence
The mathematical operators used in LotusScript are as follows:

Operator Operation Performed

^ Exponentiation

* Multiplication

/ Regular division (returns a floating point
result)

\ Integer division (rounds the operands to
integers, divides, and returns only the
integer part of the answer)

+ Addition

- Subtraction or Negation (depending on
context)

If you have multiple mathematical operators in a single expression, then LotusScript adheres to
some fairly standard rules for "order of operation" when it evaluates the statement. What this means
is, the operators are not evaluated strictly from left to right, they are evaluated preferentially from
left to right. For example, in the expression:

2 + 3 * 4

the result is 14, because the multiplication has a higher preference than the addition does, and it
therefore gets evaluated first (so we multiply 3 times 4, and then add 2). This is not just some
strange thing that LotusScript does, though. It's just how math works. If you enter this expression
into any kind of calculator, you'll get the same result.

The order of operation for mathematical operators is:

()
Expressions bracketed in Parenthesis
always get evaluated first

^ Exponentiation

-
Negation (not subtraction, which is farther
down)

* / Multiplication and division

The [unfinished] LotusScript Book Page 73 of 156
 by Julian Robichaux

\ Integer division

Mod Modulo division (remainder)

- + Subtraction and addition

& + String concatenation

=, <>, ><, <, <=, =<, >,
>=, =>, Like Numeric or string comparison

Not Logical or bitwise Negation

And Logical or bitwise And

Or Logical or bitwise Or

Xor Logical or bitwise Exclusive-Or

Eqv Logical or bitwise Equivalence

Imp Logical or bitwise Implication

Is Object reference comparison

Before you get too frustrated trying to think of how you'll remember this list of operator preference,
keep in mind that you can always just put parenthesis around your expressions to make sure they
evaluate in the order you want them to. That's really the recommended way to do it, because it not
only makes the code easier to read, but it also keeps you from having to memorize the above list.

For instance, in the example we had earlier, if we really wanted the addition to take place prior to
the multiplication, we could just write:

((2 + 3) * 4)

and we will get our (expected?) answer of 20. Likewise, to make sure that the expression is easily
maintainable from the coding standpoint, if you did want the multiplication to happen first, you
should really write the expression like this:

(2 + (3 * 4))

This just makes the statement much more obvious to interpret (and therefore, less error-prone).

Binary, Hex, and Octal Numbers
With the exception of a few very unusual people, we tend to think of numbers as either integers
(like 500) or decimals (like 3.14). In mathematical terms, these are "base 10" numbers. What this

The [unfinished] LotusScript Book Page 74 of 156
 by Julian Robichaux

essentially means is that there are 10 possible characters (0 through 9) that you can use to construct
a number.

There are certain cases where it makes more sense to think of numbers in other, non-base 10
numbering systems. LotusScript provides the capability to natively represent numbers in 3 other
numbering systems: binary (base 2), octal (base 8), and hexadecimal (base 16). Of these, binary and
hexadecimal (usually referred to as "hex") are most common. These numbers can be stored in either
Integer or Long data types, and they can be entered like this:

binaryNumber& = &B1001001 '** prefixed by &B or &b
octalNumber& = &O1786 '** prefixed by &O or &o (the letter "o")
hexNumber& = &Hffee0 '** prefixed by &H or &h

An interesting (and sometimes confusing) thing to keep in mind is that any binary, octal, or hex
number that is larger than the maximum allowable value for the data type that it's using (either
Integer or Long) is treated as a negative number. So the hex representation of the number –1 is
FFFFFFFF, -32,768 is FFFF8000, and -2,147,483,648 is 80000000. This is because of the "sign bit"
on the number, which is discussed later in the chapter.

Also, even though you might assign a variable using the notation for, say, a binary number, if you
use or display the variable, you'll see it as a regular base 10 value. For example, if you run the
following script:

myInt% = &B1001
Print myInt%

the output will be "9" (which is the binary number 1001 converted to base 10), not "1001". If you
want to see the number in its binary, octal, or hex representation, you need to use the Bin, Oct, or
Hex functions. If you want to convert a binary, octal, or hex string back to a base 10 number, we'll
provide you with a function for doing this later in the chapter.

While you may not immediately be able to think of a time where it would even make sense to deal
with non-base 10 numbers, you will occasionally run across situations where it makes your life a lot
easier. Network subnets and bitmasking (often used in C programming, and sometimes used by the
LotusScript programmer when accessing DLLs) are two common examples. You will see others
later in this chapter, and in the chapters on accessing DLLs.

Very Large and Very Small Number Representation
When representing very large or very small numbers, Notes often uses scientific notation. For
example, the largest value for a variable of type Single is 3.402823E+38. That "E+38" at the end of
the number means that the decimal place in 3.402823 needs to be moved over 38 places to the right,
which actually translates into the number 340,282,300,000,000,000,000,000,000,000,000,000,000.

A simpler example to grasp is that the number 208 can be expressed in scientific notation as
2.08E+2. This could also technically be written as 2.08E2 (the plus sign is implied), but it's
generally good practice to specify the plus sign.

The [unfinished] LotusScript Book Page 75 of 156
 by Julian Robichaux

You can also express very small numbers in scientific notation by using E-# instead of E+#. For
example, the number 0.000999 can also be expressed as 9.99E-4. The E-4 means that you should
move the decimal place over 4 places to the left.

Using the Mod Function
The Mod function is one of those things that can be very useful, but is underutilized by a lot of
people because they don't really understand what it does. By definition, the Mod function will give
you the remainder from two numbers that are divided. So, 5 Mod 2 = 1, because 5 divided by 2
equals 2.1, and 1 is the remainder. This seems simple but useless.

However, there are many situations where this is actually a nice shortcut. For example, if you're
stepping through thousands of documents in a view and you want to output a running count of
documents, you could write some code like this:

Do Until (doc Is Nothing)
 '** code here…
 count& = count& + 1
 If (count& Mod 100 = 0) Then
 Print "Processing document # " & count&
 End If
 Set doc = view.GetNextDocument(doc)
Loop

This will tell you about every hundredth document that gets processed, which is much nicer and
more memory-efficient (if there are a lot of documents) than being told about each one.

There will be other practical examples of the Mod function later in the chapter.

Custom Routines
The rest of this chapter will consist of custom subs and functions that will demonstrate ways to
manipulate numbers.

Determining Whether a Number is Odd or Even
We'll start off with something fairly simple here: figuring out whether a number is odd or even. This
will be a good use of the Mod function, which we discussed earlier.

Script – Determine if a number is even
Function IsEven (num As Variant) As Integer
 Dim tempNum As Double

 '** if this isn't a number, just exit
 If Isnumeric(num) Then
 tempNum = Cdbl(num)
 Else
 IsEven = False
 Exit Function
 End If

 '** use Mod to figure out if the number is
 '** even or odd
 If (tempNum Mod 2 = 0) Then
 IsEven = True
 Else

The [unfinished] LotusScript Book Page 76 of 156
 by Julian Robichaux

 IsEven = False
 End If
End Function

Script – Determine if a number is odd
Function IsOdd (num As Variant) As Integer
 Dim tempNum As Double

 '** if this isn't a number, just exit
 If Isnumeric(num) Then
 tempNum = Cdbl(num)
 Else
 IsOdd = False
 Exit Function
 End If

 '** use Mod to figure out if the number is
 '** even or odd
 If (tempNum Mod 2 = 1) Then
 IsOdd = True
 Else
 IsOdd = False
 End If
End Function

Okay, here are some of the finer points of the code. First, by allowing the user to pass the value they
want to check as a Variant, they can check any of the numeric data types with one function, so you
don't have to write a separate function for Integers, Longs, etc. We just use the built-in IsNumeric
function to make sure we're actually dealing with a number. Second, we're using Mod to see if a
number is even or odd. Because Mod gives you the remainder from the division of 2 numbers, and
we know that any even number divided by 2 has a zero remainder, we can also know that if a
number Mod 2 equals zero, then it's an even number.

Granted, these functions aren't written very elegantly. You could rewrite the last If-Then block in
the IsEven function as simply:

IsEven = Not(tempNum Mod 2)

However, that's much harder to understand just by looking at it, and so it doesn't serve as a good
book example in this case. Also, the IsOdd function is redundant, since you could really just figure
out a number is odd by running the IsEven function and inverting the result (if you believe that
anything that's not even is odd).

Remove Non-Numeric Elements from a String
Often, you will end up with a string that's supposed to represent a number, but it may contain non-
numeric characters (like formatted phone numbers or social security numbers). Here's a function
that will get rid of the non-numeric elements for you.

Script – Remove non-numeric elements from a string
Function StripNonNumeric (numberString As String) As String
 '** convert a text string to a string of numbers, stripping any
 '** non-numeric characters.
 '** for example, StripNonNumeric("123-45-6789") = "123456789"
 Dim i As Integer
 Dim tempChar As String

The [unfinished] LotusScript Book Page 77 of 156
 by Julian Robichaux

 Dim returnString As String

 For i = 1 To Len(numberString)
 tempChar = Mid$(numberString, i, 1)
 If (Asc(tempChar) >= 48) And (Asc(tempChar) <= 57) Then
 '** we found a number
 returnString = returnString & tempChar
 End If
 Next

 StripNonNumeric = returnString

End Function

The logic is pretty simple: go through the string one character at a time, and create a new string
using only the characters that are numbers. In the if-then block, the number 48 is the ASCII code for
0, and 57 is the ASCII code for 9.

It's also easy to extend the function a little if you have special cases. For example, you might want a
version of the function that optionally allows you to have negative numbers and decimal places, as
follows.

Script – Remove non-numeric elements, allowing negative numbers and a decimal place
Function StripNonNumeric2 (numberString As String, allowNegative As Integer,
allowDecimal As Integer) As String
 '** convert a text string to a string of numbers, stripping any
 '** non-numeric characters. Optionally allows you to keep
 '** a leading negative sign and/or a decimal place (if any)
 '** For example, StripNonNumeric2("123-45-6789") = 123456789
 Dim i As Integer
 Dim tempChar As String
 Dim returnString As String

 For i = 1 To Len(numberString)
 tempChar = Mid$(numberString, i, 1)
 If (Asc(tempChar) >= 48) And (Asc(tempChar) <= 57) Then
 '** we found a number
 returnString = returnString & tempChar
 Else
 '** special non-number cases
 If allowNegative And (tempChar = "-") And (returnString = "") Then
 returnString = returnString & tempChar
 Elseif allowDecimal And (tempChar = ".") Then
 returnString = returnString & tempChar
 '** set allowDecimal to False, so we only have

'** one decimal place
 allowDecimal = False
 End If
 End If
 Next

 StripNonNumeric2 = returnString

End Function

You could add similar logic to allow for currency symbols, scientific notation, etc.

The [unfinished] LotusScript Book Page 78 of 156
 by Julian Robichaux

Formatting Numbers
LotusScript has a built-in Format function that's really good for formatting numbers as strings. The
Designer Help database has all the information you'll need, as far as the options and parameters for
the function are concerned, but here are a few examples to get you started.

Script – Adding commas to a number string
numberWithCommas = Format$(num&, "#,#")

Script – Displaying a number string as currency
currencyNumber = Format$(num@, "Currency")

Script – Forcing a certain number of decimal places
decimal4 = Format$(num!, "#,#.0000")

Script – Add leading zeros, if necessary
leadingZeros = Format$(num%, "00000")

Script – Force scientific notation display
scientific = Format$(num!, "#.###E+")

There are many other options and combinations you can use – please consult the help file for more
information. Just keep in mind that the Format function is very flexible, and check out its
capabilities before you decide to write a custom routine to, say, add commas to a number string
output.

By the way, the "#,#" format string will add a thousands separator every 3 digits. At first glance,
you might think that it will only display the first 2 numbers separated by a comma, but that's not the
case. Try it out!

 Converting Numbers to and from Base 10
LotusScript has built-in functions to convert numbers from base 10 (normal, everyday integer-type
numbers that we're used to seeing and counting with) to either base 2 (binary), base 8 (octal), or
base 16 (hex). In the case that you need to convert any of these non-base 10 numbers back to base
10 – or, for some reason, to convert to and from another base – here are some conversion functions.

Script – Convert from any base (<= 36) to base 10
Function ConvertToBase10 (thisNumString As String, cBase As Integer) As Long
 '** This function takes a non-base 10 number (of base cBase) and
 '** converts it to a base 10 Long number.
 On Error Goto processError

 Dim tempString As String
 tempString = Trim(Ucase(thisNumString))

 '** if someone passes us an empty string, just return 0
 If (tempString = "") Then
 ConvertToBase10 = 0
 Exit Function
 End If

 '** also, if someone wants to convert from a base bigger than 36,

'**return 0
 If (cBase < 2) Or (cBase > 36) Then
 ConvertToBase10 = 0

The [unfinished] LotusScript Book Page 79 of 156
 by Julian Robichaux

 Exit Function
 End If

 '** do some special conversions for Binary, Octal, and Hex numbers, '** which might
be represented in a different format
 If (Len(tempString) > 1) Then
 If (cBase = 2) And (Left$(tempString, 2) = "&B") Then
 tempString = Right$(tempString, Len(tempString) - 2)
 Elseif (cBase = 8) And (Left$(tempString, 2) = "&O") Then
 tempString = Right$(tempString, Len(tempString) - 2)
 Elseif (cBase = 16) And (Left$(tempString, 2) = "&H") Then
 tempString = Right$(tempString, Len(tempString) - 2)
 Elseif (cBase = 16) And (Ucase(Left$(tempString, 2)) = "0X") Then
 tempString = Right$(tempString, Len(tempString) - 2)
 End If
 End If

 Dim convString As String
 convString = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"

 Dim checkstring As String
 Dim tempnum As Long
 Dim convnum As Integer

 '** for each of the digits in tempString, convert them to base 10
 '** by getting their value as an integer and raising them to the
 '** appropriate power of cBase. Stop when you either get to the end
 '** or a non-convertable character
 i% = 0
 For k% = Len(tempString) To 1 Step -1
 checkstring = Mid$(tempString, k%, 1)
 checknum = Instr(1, convString, checkstring, 5)

 If (checknum < 1) Or (checknum > cBase) Then
 Exit For
 Else
 tempnum = tempnum + ((checknum - 1) * (cBase ^ i%))
 i% = i% + 1
 End If
 Next

 ConvertToBase10 = tempnum
 Exit Function

processError:
 Dim lastError As String
 lastError = "Error " & Cstr(Err) & ": " & Error$
 ConvertToBase10 = 0
 Exit Function

End Function

Script – Convert from base 10 to any base (<= 36)
Function ConvertFromBase10 (thisNum As Long, cBase As Integer) As String
 '** converts a base 10 number to another base (cBase),
 '** up to base 36
 On Error Goto processError

 '** if someone passes us a number less than 1, just return "0"
 If (thisNum < 1) Then
 ConvertFromBase10 = "0"

The [unfinished] LotusScript Book Page 80 of 156
 by Julian Robichaux

 Exit Function
 End If

 '** also, if someone wants to convert to a base bigger than 36,

'** return "0"
 If (cBase < 2) Or (cBase > 36) Then
 ConvertFromBase10 = "0"
 Exit Function
 End If

 Dim convString As String
 convString = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"

 Dim numList List As Integer
 Dim curDigit As Integer
 Dim nextDigit As Long
 Dim tempnum As Long

 '** convert the base 10 number to a list of integers (numList),
 '** each one being a digit of the new base cBase number.
 i% = 0
 tempnum = thisNum
 nextDigit = (tempnum \ cBase)

 Do While (tempnum > cBase - 1)
 curDigit = (tempnum Mod cBase)
 numList(i%) = curDigit
 i% = i% + 1

 tempnum = nextDigit
 nextDigit = (tempnum \ cBase)
 Loop

 '** also include whatever's left over
 numList(i%) = tempnum

 '** now each element of numList will be a base cBase digit (from

'** 0 to cBase-1), that we can convert to a cBase digit. We pick
'** the digits from the list in the convString string, such that
'** the number 0 is the first element of the string, the number 1

 '** is the second element, etc.
 Dim tempString As String
 Forall digit In numList
 tempString = Mid$(convString, digit + 1, 1) & tempString
 End Forall

 ConvertFromBase10 = tempString
 Erase numList
 Exit Function

processError:
 Dim lastError As String
 lastError = "Error " & Cstr(Err) & ": " & Error$
 ConvertFromBase10 = ""
 Erase numList
 Exit Function

End Function

The assumption here is that a non-base 10 numbering system will use digits that increase in value
from 0 to 9, and then from A to Z (just like hex numbers do). If this is not true, you will need to

The [unfinished] LotusScript Book Page 81 of 156
 by Julian Robichaux

adjust the "convString" variable, so that it contains all the digits in your number system, from
lowest to highest.

Otherwise, this is just straight math, which unfortunately is easier to explain by looking at the code
than by trying to tell you what all the calculations are. It's really not that complex once you
understand what you're supposed to do, but, like all things mathematical, knowing what to do is the
hard part.

Using AND, OR, and XOR as Bitwise Operators
When you use a "bitwise" operator, this means that the operator is comparing the bits of the binary
representation of two numbers. Below is a table of bitwise operator calculations:

bit 1 bit 2 AND OR XOR EQV IMP

1 1 1 1 0 1 1

1 0 0 1 1 0 0

0 1 0 1 1 0 1

0 0 0 0 0 1 1

Of these operators, you will use AND, OR, and XOR the most. Let's look at some examples to try
to make this a little easier to grasp.

Let's say you have two binary numbers &B0011 and &B1010, and you want to apply the AND
operator to them and get the result. Here's a table of what happens:

bit position first number second number result of 2 bits being
ANDed together
(from calculation
table above)

0 1 0 0

1 1 1 1

2 0 0 0

3 0 1 0

So your resulting number is &B0010. To get the resulting bit in position 0 (the position farthest to
the left), you look at the bits that are in that position in both numbers (1 and 0), and you get the
result of "1 AND 0" from the previous table. Then you move on and do that for all the bits in all the

The [unfinished] LotusScript Book Page 82 of 156
 by Julian Robichaux

positions. It's a lot like adding two numbers (from left to right, you determine from an addition table
what the sum of two digits are), except you don't carry anything.

The same rules apply for all the other bitwise operators: calculate each bit position one at a time,
using the table on the previous page. If one of the two numbers is "shorter" than another (it has
fewer significant bits), you simply left-pad the shorter number with zeros to make them equal in
length.

By the way, the reason I'm referring to these as "bitwise" operators is because the AND, OR, XOR,
etc. operators can also operate on logical/Boolean values (in which case, they're referred to as
"logical" operators). You can use the same table to calculate the results, but you simply replace "1"
with "True" and "0" with "False" in the calculation and the result.

You need to be a little careful about the difference between a bitwise and a logical operator when
you're working with logic in a script, however. For example, a lot of people like to shorten their
scripts by using the fact that LotusScript treats all non-zero numbers as Boolean True, as in this
statement:

someNum% = a + b
If (someNum%) Then
 '** if someNum% is not equal to zero, do something here…
End If

This works as expected, evaluating the If-Then statement when the "someNum" variable is a non-
zero value. However, if you try to do this:

someNum% = a + b
If Not (someNum%) Then
 '** you want to get here if someNum% is equal to zero,
 '** but it's not going to work this way
End If

then it will only work if the "someNum" variable is exactly equal to a binary number that is all ones
(like &B111). That is because the Not is used as a bitwise operator in that context, since it is
operating on a number, not a true Boolean value. Be careful!

One last point before we move on: the bitwise operators only work properly on number systems that
are Base 2 or a base that is a power of 2 (like Octal/Base 8 and Hex/Base 16). Hex is often very
convenient to use when working with large numbers, because "F" is actually the binary "1111", so
you can easily construct a long string of ones by appending a few F's together. However, if you try
to use bitwise operators on Base 10 integers, you may get some unexpected results.

Using Bitwise AND for "Masking" Numbers
A number "mask" is a method of removing or modifying certain significant digits from another
number, so that you can see or operate on other specific digits in the number. In programming,
number masking is often used to allow the programmer to look at individual bits of a binary number
or at different ranges of hexadecimal numbers, when each bit or range might specify something
different (for example, with error codes).

The [unfinished] LotusScript Book Page 83 of 156
 by Julian Robichaux

We'll start with an easy example. Let's say you have a binary number in your program, where the
third bit to the left (like the "1" in the binary number "00100") indicates whether or not a program
option is enabled. To check this, we can set up a mask of binary "100" (&B100), and apply it to the
number using the AND operator.

Const MY_MASK = &B100
maskedNum% = checkNum% And MY_MASK

If (maskedNum% = MY_MASK) Then

isThirdBitSet% = True
Else

isThirdBitSet% = False
End If

The way the mask works is that when you apply the mask with the AND operator, every place
there's a zero (which is everywhere before and after the "1", in this case) becomes a zero, and every
place there's a one remains a one as long as that place was already one. In other words, if the
number has ones in every place the mask has a one, then the number satisfies the mask condition,
and after the AND operation, it will equal the mask.

You might often see the above script segment written as this:

maskedNum% = checkNum% And MY_MASK
If (maskedNum%) Then

isThirdBitSet% = True
Else

isThirdBitSet% = False
End If

or, even less responsibly:

maskedNum% = checkNum% And MY_MASK
isThirdBitSet% = maskedNum%

Be very careful when you start pretending that all non-zero numbers are Boolean True values. In the
above case, this sort of works because we're only checking one bit, but if the mask was checking for
multiple bits (like &B0101), then you would end up with a false "True" result even if only one of
the bits matched. If that's what you want, I suppose it works out fine, but you can really easily spend
a lot of time debugging around that sort of thing.

Thinking about it one way, masking allows you to check to see if certain bits have been "set", as in
the example above (you can check multiple bits just by adding ones in other places). Thinking about
it another way, masking can allow you to discard certain bits from a number so you only have to
deal with the other bits. A good example of this is subnet masking, which is used quite often in
TCP/IP networks.

A common subnet mask is 255.255.255.0. In binary, this corresponds to
11111111.11111111.11111111.00000000. When you apply that mask to an IP address – say,
192.168.1.123 – it returns the first 3 octets of the address (192.168.1.0), which is the subnet that the
address is in. For a piece of networking equipment on the WAN, those first 3 octets are the only
ones that are significant (on that particular network) in terms of knowing where to send a packet of
data. If your subnet mask is 255.255.255.128 (where 128 is 10000000 in binary), then all the IP

The [unfinished] LotusScript Book Page 84 of 156
 by Julian Robichaux

addresses get masked to either #.#.#.128 or #.#.#.0, so you've doubled the number of subnets you
can look at.

Using Bitwise OR for Combining Numbers
While the bitwise AND operator can be used to strip (or mask) individual bits from a number, the
OR operator can be used to combine the bits of numbers. For example, let's say you have a pair of
binary numbers, &B1000 and &B0001. By "ORing" the two numbers together, you get &B1001.
The OR operator will put a "1" in every bit position where there's a "1" in either (or both) numbers,
and will leave "0" everywhere else.

The concept of combining number bits comes into play every so often when you're working with
external DLL functions and you need to specify a certain combination of options. For example,
here's a call to the Windows API function that opens a file:

Const OF_READ = &H0
Const OF_SHARE_DENY_NONE = &H40

hFile = OpenFile(fileName, FileStruct, OF_READ Or OF_SHARE_DENY_NONE)

In this function call, the options to open a file for read mode (OF_READ) and in share mode
(OF_SHARE_DENY_NONE) are combined so that the file is opened for both reading and sharing.

Using Bitwise XOR for "Flipping" Bits
The nature of the XOR operation makes it good for "flipping" one or more bits in a number. In other
words, if the bit in a certain position is 0, you can "flip" it to 1, and if it's 1, you can "flip" it to 0. As
an example, let's say you want to change the bit in bit position zero. You can simply do this:

myNumber% Xor &B0001

and the bit in position zero will be flipped. If you perform the identical operation again, the bit will
be flipped back. This type of functionality is often used in data encryption (because it's reversible)
and binary addition, among other things.

Signed and Unsigned Numbers, and the Sign Bit
In the binary representation of a number, the most significant bit (the one farthest to the left)
indicates whether a number is odd or even. For example, the Integer number
&B0000000000000001 is positive, but the Integer number &B1000000000000000 is negative. For
a Long number, the sign bit is twice as far to the right (bit position 31 instead of 15).

Also, smaller negative numbers are left-padded with ones, so that the representation of –1 as an
Integer is &B1111111111111111 (or, more conveniently, &HFFFF), while &B1000000000000001
represents –32,767.

Getting and Setting the Bit in a Given Position
Let's put all this information about bit manipulation together with a few examples. First, here's a
function that will return the value of a bit in a specified position.

Script – Function that gets the bit value in a given position
Function GetBitVal (theNum As Long, whichBit As Integer) As Integer

The [unfinished] LotusScript Book Page 85 of 156
 by Julian Robichaux

 '** gets the value of the bit (0 or 1) in the given position
 '** (from 0 to 31)
 Dim tempNum As Long

 If (whichBit > 31) Or (whichBit < 0) Then
 GetBitVal = -1
 Exit Function
 End If

 If (whichBit = 31) Then
 '** this is the sign bit
 tempNum = theNum And &H80000000
 Else
 tempNum = theNum And (2 ^ whichBit)
 End If

 If (tempNum = 0) Then
 GetBitVal = 0
 Else
 GetBitVal = 1
 End If

End Function

With this function, we pass a Long number value and the bit position we want to look at (from 0 to
31), and value of the bit in the specified position is returned (either 0 or 1, or –1 if the bit position is
outside the legal range of values). We count from 0 to 31 instead of from 1 to 32 because of the way
that binary numbers are represented: the bit position that's farthest to the right represents 2 ^ 0 when
it's set, so it's position 0, the next one to the left represents 2 ^ 1 when it's set, so it's position 1, and
so on.

As we mentioned earlier, the bit in the farthest position to the left is the sign bit. We can't check for
that bit as 2 ^ 31, because that will overflow the function. Technically, that bit (as a Long number)
is -2,147,483,648; however, it's easier to refer to it as &H80000000, as we did in the script.

You can also write an Integer version of this function, where the maximum bit position is 15, and
the sign bit is &H8000.

The complementary function to this is one that sets the value of a bit in a given position and returns
the modified number. This process is slightly more complicated, but it's not too bad.

Script – Function that sets the bit value in a given position
Function SetBitVal (theNum As Long, whichBit As Integer, newVal As Integer) As Long
 '** set the value of a particular bit
 Dim tempNum As Long

 If (whichBit > 31) Or (whichBit < 0) Then
 SetBitVal = theNum
 Exit Function
 End If

 If (newVal <> 0) Then
 newVal = 1
 End If

 '** using OR will always set the value to 1. We can then use XOR
 '** to flip the bit, if it's really supposed to be zero

The [unfinished] LotusScript Book Page 86 of 156
 by Julian Robichaux

 If (whichBit = 31) Then
 '** this is the sign bit
 tempNum = theNum Or &H80000000
 If (newVal = 0) Then
 tempNum = theNum Xor &H80000000
 End If
 Else
 tempNum = theNum Or (2 ^ whichBit)
 If (newVal = 0) Then
 tempNum = theNum Xor (2 ^ whichBit)
 End If
 End If

 SetBitVal = tempNum

End Function

So, when we're getting a bit value, we use the AND operator to apply a mask to the number and see
what we get. When we're setting a bit value, we use OR to change the bit to 1 (while leaving the
other bits alone), and then use XOR to flip that bit if it's really supposed to be 0.

Bit Shifting
"Bit shifting" is the process of taking all the bits in a binary number and moving them a certain
number of positions to the left or to the right. For example, if you have the Binary number
00001010 and you shift it to the left 1 position, it becomes 00010100; if you shift it to the left 2
positions, it becomes 00101000, and so on. Likewise, if you shift it to the right 1 position, it
becomes 00000101; if you shift it right 2 times, it becomes 00000010, etc.

Each time you shift a binary number to the left, you're technically multiplying that number by 2.
While this may not seem too intuitive at first, think about numbers in a normal Base 10 number
system. If you multiply a number by 10, you're really just moving all the numbers over to the left
and sticking a zero on the end. In the same way, in a Binary (Base 2) system of numbers,
multiplying by 2 will move all the numbers to the left and add a zero to the end. Conversely,
shifting a Binary number to the right is the same thing as dividing by 2.

So why would you ever want to shift bits one way or another? Well, one common use of bit shifting
is with cryptographic encryption and hashing algorithms. Or you might need to convert some C
code into LotusScript, and if the code employs any bit-shifting operations, you'll find that
LotusScript (at least as of R5) doesn't have any native bit-shifting functions.

Here are some basic bit-shifting functions to look at:

Script – Bit-shift left, optionally maintaining the sign of the number
Function BitShiftLeft (theNum As Long, howMany As Integer, maintainSign As Integer) As
Long
 '** shift the bits of a number to the left a specified number of times,
 '** optionally maintaining the sign bit of the number
 Dim tempNum As Long
 Dim isSigned As Integer
 Dim leftBit As Long
 Dim mask As Long

 '** exit early if the shift is out of range
 If (howMany > 31) Then

The [unfinished] LotusScript Book Page 87 of 156
 by Julian Robichaux

 BitShiftLeft = 0
 Exit Function
 Elseif (howMany <= 0) Then
 BitShiftLeft = theNum
 Exit Function
 End If

 '** strip the sign bit, and figure out if this is a signed number
 tempNum = theNum And &H7FFFFFFF
 If Not (tempNum = theNum) Then
 isSigned = True
 End If

 '** figure out what the left-most bit will be (we'll have to strip it off
 '** before we multiply)
 leftBit = theNum And (2 ^ (31 - howMany))

 '** strip away the bits that will be shifted away, so we don't overflow
 mask = (2 ^ (31 - howMany)) - 1
 tempNum = tempNum And mask

 '** shift over by multiplying by 2
 tempNum = tempNum * (2 ^ howMany)

 '** adjust the sign bit as necessary
 If (maintainSign And isSigned) Then
 '** set the sign bit if this is a negative number that should

'** stay negative
 tempNum = tempNum Or &H80000000
 Elseif (leftBit > 0) And Not maintainSign Then
 '** also set the sign bit if we don't care about the sign, and

'** the left-most bit should be a one
 tempNum = tempNum Or &H80000000
 End If

 BitShiftLeft = tempNum
End Function

Script – Bit-shift right, optionally maintaining the sign of the number
Function BitShiftRight (theNum As Long, howMany As Integer, maintainSign As Integer)
As Long
 '** shift the bits of a number to the right a specified number of times,
 '** optionally maintaining the sign bit of the number
 Dim tempNum As Long
 Dim isSigned As Integer

 '** exit early if the shift is out of range
 If (howMany > 31) Then
 BitShiftRight = 0
 Exit Function
 Elseif (howMany = 31) Then
 '** special case if we're shifting 31 times
 If (theNum >= 0) Then
 BitShiftRight = 0
 Elseif (maintainSign) And ((theNum And &H40000000) = 0) Then
 BitShiftRight = 1
 Else
 BitShiftRight = 0
 End If
 Exit Function
 Elseif (howMany <= 0) Then
 BitShiftRight = theNum
 Exit Function

The [unfinished] LotusScript Book Page 88 of 156
 by Julian Robichaux

 End If

 '** strip the sign bit, if necessary
 If Not maintainSign Then
 tempNum = theNum And &H7FFFFFFF
 If Not (tempNum = theNum) Then
 isSigned = True
 End If
 Else
 tempNum = theNum
 End If

 '** shift over by dividing by 2
 tempNum = tempNum \ (2 ^ howMany)

 '** if we had stripped the sign bit before, we'll want to
 '** add it back to whatever spot it would have shifted to
 If (isSigned And Not maintainSign) Then
 tempNum = tempNum Or (2 ^ (31 - howMany))
 End If

 BitShiftRight = tempNum
End Function

Both functions take as their input the number that we're operating on (theNum), the number of times
we want to shift (howMany), and a Boolean value indicating whether or not we want to maintain
the sign of the number as we're shifting (maintainSign). The maintainSign flag is important, because
the result you get will be different depending on whether or not you want to keep the sign bit of the
number constant. This is especially important for when you shift negative numbers to the right. If
you want to maintain the sign of the number to keep it negative, then the resulting number (unless
it's zero) will be left-padded with ones. If you don't want to maintain the sign, it will be left-padded
with zeros.

To watch these functions in action, add them to an agent and add this bit of script to the Initialize
sub:

 Dim testNum As Long
 Dim zeros As String
 testNum = -1234567
 zeros = String(32, "0")

 Print Right$(zeros & Bin$(testNum), 32)

 Print "Left Shift"
 For i% = 0 To 32
 Print Right$(zeros & Bin(BitShiftLeft(testNum, i%, True)), 32), _
 Right$(zeros & Bin(BitShiftLeft(testNum, i%, False)), 32)
 Next

 Print "Right Shift"
 For i% = 0 To 32
 Print Right$(zeros & Bin(BitShiftRight(testNum, i%, True)), 32), _
 Right$(zeros & Bin(BitShiftRight(testNum, i%, False)), 32)
 Next

The basic way to shift left or right is to multiply or divide by 2. However, there are two special
things we have to account for. First, the sign bit (in position number 31) will not automatically shift
as we're multiplying or dividing. If we want to maintain the sign of a negative number as we're

The [unfinished] LotusScript Book Page 89 of 156
 by Julian Robichaux

shifting right, this isn't a problem; otherwise, we have to move or manipulate the sign bit manually.
For a left-shift, this means figuring out whether or not the bit that would end up in position 31
would be a one or not, and setting the bit with an OR operator if it would. For a right-shift, this
means if we're shifting a negative number and we don't want to maintain the sign, we have strip the
sign bit and manually set the bit at the position (31 – howMany) after we're done shifting.

The second thing to watch out for is overflowing the result as we're multiplying to left-shift a
number. To avoid this, we strip off howMany bits on the left side of the number using an AND
mask before we multiply. This ensures that the left-most bits of the number that's being shifted will
be zeros, and shifting over a zero is a "safe" operation.

Bit Rotation
Something that's even more obscure than bit-shifting is a concept called bit rotation. With bit
shifting, the bits "fall off" at the end of the number when they are shifted beyond the legal range of
bit positions. With bit rotation, if a bit would have "fallen off" the left side of the number, it is
instead moved to the far right of the number. Likewise, if it would have "fallen off" the right side, it
gets moved to the far left. For example:

Original binary number 11100000000000100101101011010000

Left-shifted one position 11000000000001001011010110100000

Left-rotated one position 1100000000000100101101011010001

This is a concept used in some hashing functions, in order to scramble the text of a number. Just in
case you ever run into this situation, here's a couple of functions that will perform a left or right
rotation of a number for you:

Script – Rotate a number a certain number of bits to the left
Function BitRotateLeft (theNum As Long, Byval howMany As Integer) As Long
 '** rotate the bits of a number to the left a specified number of times
 Dim leftSide As Long
 Dim rightSide As Long

 '** adjust if we're supposed to shift more than 31 times
 howMany = howMany Mod 32

 '** calculate the left and right sides of the number
 leftSide = BitShiftLeft(theNum, howMany, False)
 rightSide = BitShiftRight(theNum, (32 - howMany), False)

 '** and OR them together for the result
 BitRotateLeft = leftSide Or rightSide
End Function

Script – Rotate a number a certain number of bits to the right
Function BitRotateRight (theNum As Long, Byval howMany As Integer) As Long
 '** rotate the bits of a number to the right a specified number of times
 Dim leftSide As Long
 Dim rightSide As Long

The [unfinished] LotusScript Book Page 90 of 156
 by Julian Robichaux

 '** adjust if we're supposed to shift more than 31 times
 howMany = howMany Mod 32

 '** calculate the left and right sides of the number
 leftSide = BitShiftLeft(theNum, (32 - howMany), False)
 rightSide = BitShiftRight(theNum, howMany, False)

 '** and OR them together for the result
 BitRotateRight = leftSide Or rightSide
End Function

These functions make use of the left- and right-shift functions we wrote earlier to figure out what
the left and right sides of the resulting number should be, and then uses the OR operator to combine
the left and right sides.

The [unfinished] LotusScript Book Page 91 of 156
 by Julian Robichaux

Dealing with Date/Time Values
Date and time values present some of the biggest challenges when programming in LotusScript.
This is because there are really 5 different representations of date/time values:

• The NotesDateTime class

• The LotusScript Date Variant (type 7)

• A numeric value (LotusScript data type Double)

• A date/time value stored in a Notes document field

• A simple text representation, as a string

While a date/time value can normally be converted between all of these representations, you have to
be very careful to know what type of value you’re working with when you want to manipulate or
compare values. The most common representations you’ll deal with are NotesDateTime, Varia nt,
and string, so we’ll address those in the most detail. Below are some brief descriptions of the
different representations, along with some common conversions you’ll end up using.

NotesDateTime Representation
The NotesDateTime class is a native LotusScript class used specifically for working with date/time
values. As such, it has quite a few built-in properties and methods that are handy to use, and it
probably offers the highest degree of flexibility of any of the representations.

For a NotesDateTime value ndtDateTime, the following conversions are available:

Variant String Number (Double)

ndtDateTime.LSLocalTime

ndtDateTime.LSGMTTime

ndtDateTime.DateOnly

ndtDateTime.TimeOnly

ndtDateTime.LocalTime

ndtDateTime.GMTTime

Cdbl(ndtDateTime.LSLocalTime)

One thing you'll want to watch out for when using multiple NotesDateTime values: if you set two
NotesDateTime values equal to each other using the Set command, and you then go back and
change one of the values, then the other one will change as well. For this reason (and because of the
confusion it causes), you'll want to set two NotesDateTime values to be equal to each other by using
the following technique:

Script – Setting two NotesDateTime values equal to each other
Set ndtDateTime1 = New NotesDateTime(Now)
Set ndtDateTime2 = New NotesDateTime(ndtDateTime2.LocalTime)

The [unfinished] LotusScript Book Page 92 of 156
 by Julian Robichaux

Variant Date Type Representation
The Variant date type (data type 7) is also fairly easy to use, although manipulating the value of a
date/time variant is a little more difficult than trying to do the same thing with a NotesDateTime
value. However, a lot of date-related LotusScript operations rely on the variant date type, so it ends
up being fairly common to work with. The statements Today, Now, Date, and Time all return
variant values, and functions like Format and DateValue work with variants but not the
NotesDateTime class.

For a variant date/time value varDateTime, the following conversions are available:

NotesDateTime String Number (Double)

Set ndtDateTime = New
NotesDateTime(varDateTime)

Cstr(varDateTime)

Format$(varDateTime,
“mm/dd/yyyy”)

Cdbl(varDateTime)

String Representation
A string value is a common way to enter or output date/time values, but if you’re doing any kind of
data manipulation with the value, you’ll probably find string s very tedious to work with. The
biggest thing to watch out for with string values is the formatting of the value, especially the date
portion. Remember that when you convert a string to another date representation, or you convert
another representation to a string, LotusScript will automatically use the operating system’s Short
Date format to interpret or output the value. For example, the string:

“11/02/2001”

Will be interpreted as November 2, 2001 on an American server or workstation, but it will be
interpreted as February 11, 2001 on an Italian machine. This really becomes an issue with
multinational Notes deployments, especially when you’re allowing the user to enter dates or when
you have dates hard-coded in scripts.

For a string strDateTime that has a valid date/time format, the following conversions are available:

NotesDateTime Variant Number (Double)

Set ndtDateTime = New
NotesDateTime(strDateTime)

Cdat(strDateTime)

DateValue(strDateTime)

TimeValue(strDateTime)

Cdbl(Cdat(strDateTime))

The [unfinished] LotusScript Book Page 93 of 156
 by Julian Robichaux

Numeric Representation
You normally won’t want to manipulate your date/time values as numeric values unless you have
some mathematical reason for doing so. This is mostly because the numeric representation of a
date/time is kind of confusing, especially to the naked eye.

A Variant date is actually stored internally as a number (although you never see it that way), where
the integer portion of the number represents the number of days since December 30, 1899, and the
decimal portion of the number represents the fraction of the day that has elapsed since midnight. For
example, the date/time January 1, 2001 at 4:00 PM is represented numerically as:

36892.5833333333

As you can see, this isn’t a very intuitive way of looking at a date, but it does become useful if
you’re doin g a quick calculation of how many days there are between two dates. For example:

Script 1 – Number of days between two dates
total_day% = Fix(Cdbl(Cdat(“07/08/2001”))) - Fix(Cdbl(Cdat(“02/15/2001”)))

will give you the number of days between those two dates.

If you are using a numeric date/time value that needs to be converted to another type of date/time
representation, you should first convert it to a Variant by using the CDat function, and then convert
it using one of the methods described above.

Notes Document Representation
The representation of a date/time value in a Notes document is essentially a variant value, but you
usually need to take special care when handling date/time values in Notes documents. This is for
two reasons:

• First, what you think is a date/time value in a Notes document will sometimes be a text
representation of a date, which will throw you off if you are only expecting a variant
date/time value. This can happen if, for example, an agent that hasn’t been carefully
constructed is used to populate the date/time field.

• Second, when you are updating a Notes document date/time field with script, you can
inadvertently add a text value instead of a date/time value if you’re not really careful with
your script.

The safest way to access and store date/time values in a Notes document is by using the
DateTimeValue property of the NotesItem that you’re dealing with. This property will return the
NotesDateTime value of the item, when applicable. Below are some examples of good practices
when getting date/time values from a Notes document, and storing date/time values in a Notes
document:

Script 2 – Getting a date/time value from a Notes document
Dim doc As NotesDocument
Dim item As NotesItem
Dim ndtDateTime As New NotesDateTime("")
Set item = doc.GetFirstItem("FieldName")

The [unfinished] LotusScript Book Page 94 of 156
 by Julian Robichaux

Set ndtDateTime = item.DateTimeValue

Script 3 – Adding a date/time value to a Notes document
Dim doc As NotesDocument
Dim item As NotesItem
Dim ndtDateTime As New NotesDateTime(Today)
Set item = doc.GetFirstItem("FieldName")
Set item.DateTimeValue = ndtDateTime

An even safer (and slightly different) way of getting the date/time value from a Note document is to
write a function that does some error-handling for you, as seen in the next script:

Script 4 – Function that gets the date/time value from a Notes document field
Function GetFieldDateText (thisDoc As NotesDocument, _
thisField As String) As String
 '** Some versions of Notes will return "12/30/1899" for empty

'** date fields. This function will circumvent that.

 On Error Goto processError
 Dim dateItem As NotesItem
 Set dateItem = thisDoc.GetFirstItem(thisField)

 If (dateItem Is Nothing) Then
 GetFieldDateText = ""
 Elseif (dateItem.Text = "") Then
 GetFieldDateText = ""
 Else
 GetFieldDateText = Format$(dateItem.Text, "General Date")
 End If

 Exit Function

processError:
 Dim errMess as String
 errMess = Error$
 GetFieldDateText = ""
 Exit Function

End Function

This function provides a few useful features. First, it doesn't care if the document field is truly a
date/time value or a text value – it simply takes the text value of the field and attempts to format it
as a date/time string. Second, it handles any errors that occur if the field doesn't exist, or the field
isn't in a proper date/time format, or whatever. Third, it handles the special case where some
versions of Notes will return "12/30/1899" as the value of an empty date/time field. You don't
normally want to trap for this condition in your scripts, so by using this function you can simply
check to see if the returned value is an empty string (""), in which case you can treat the field as
though it has no data.

The [unfinished] LotusScript Book Page 95 of 156
 by Julian Robichaux

Native LotusScript Date/Time Functions
Before we start writing our own LotusScript functions, let's look at the functions that LotusScript
already has for dealing with dates and times.

Function/Statement Usage Example

CDat Used to convert a
numeric or string
date/time value to a
variant.

CDat("03/02/2001") => 03/02/2001

Date[$] Used to return the
current date as a
variant (Date) or a
string (Date$).

Date$ = "03/02/2001"

DateNumber Used to convert a set
of year, month, and
day integer values to
a date/time variant.

DateNumber(2001, 3, 2) => 03/02/2001

DateSerial Same as DateNumber

DateValue Used to convert a
string date/time value
to a variant (returns
the date only).

DateValue("03/02/2001 04:05") =>
03/02/2001

Day Used to return the
day of the month
indicated by a
numeric, string, or
variant date/time
value.

Day("03/02/2001") => 2

Format[$] Used to format a
numeric, string, or
variant date/time
value as a string in
the indicated format
(see the Notes help
for format options).

Format$("03/02/2001", "mm-dd-yy") =>
"03-02-01"

Hour Used to return the
hour indicated by a
numeric, string, or
variant date/time
value.

Hour("04:05 PM") => 16

The [unfinished] LotusScript Book Page 96 of 156
 by Julian Robichaux

value.

IsDate Used to indicate
whether a string or
variant is a valid
date/time value.

IsDate("03/02/2001") => True

Minute Used to return the
minute indicated by a
numeric, string, or
variant date/time
value.

Minute("04:05 PM") => 5

Month Used to return the
month indicated by a
numeric, string, or
variant date/time
value.

Month("03/02/2001") => 1

Now Used to return the
current date and time
as a variant.

Now => 03/02/2001 04:05:45 PM

Second Used to return the
second indicated by a
numeric, string, or
variant date/time
value.

Second("04:05:45 PM") => 45

Time[$] Used to return the
current time as a
variant (Time) or a
string (Time$).

Time$ = "04:05:45 PM"

TimeNumber Used to convert a set
of hour, minute, and
second integer values
to a date/time variant.

TimeNumber(16, 5, 45) => 04:05:45 PM

Timer Used to get the
current time elapsed
since midnight.

TimeSerial Same as
TimeNumber.

The [unfinished] LotusScript Book Page 97 of 156
 by Julian Robichaux

TimeValue Used to convert a
string date/time value
to a variant (returns
the time only).

TimeValue("03/02/2001 04:05 PM") =>
16:05:00

Today Same as Date

Weekday Used to return the
weekday indicated by
a numeric, string, or
variant date/time
value (Sunday is 1,
Saturday is 7).

Weekday("03/02/2001") => 6

Year Used to return the
year indicated by a
numeric, string, or
variant date/time
value.

Year("03/02/2001") => 2001

In addition, here are the properties and methods of the NotesDateTime class. For the examples, we
will use a variable ndtDateTime, which has been set by:

Set ndtDateTime = New NotesDateTime("3/2/2001 12:30:00 PM")

Property/Method Usage Example

DateOnly A read-only string
that's the date
representation of
the value.

ndtDateTime.DateOnly => "03/02/2001"

GMTTime A read-only string
that's the date
representation of
the value, converted
to Greenwich Mean
Time.

ndtDateTime.DateOnly => "03/02/2001
04:30:00 PM GMT"

IsDST A read-only
Boolean integer
that indicates
whether the value
reflects daylight
savings time.

ndtDateTime.IsDST => False

The [unfinished] LotusScript Book Page 98 of 156
 by Julian Robichaux

LocalTime A read-write string
representing the
value in the Local
time zone.

ndtDateTime.LocalTime => "03/02/2001
12:30:00 PM"

LSGMTTime A read-only variant
that's the date
representation of
the value, converted
to Greenwich Mean
Time.

ndtDateTime.DateOnly => 03/02/2001
04:30:00 PM

LSLocalTime A read-write string
representing the
value in the Local
time zone.

ndtDateTime.LocalTime => 03/02/2001
12:30:00 PM

TimeOnly A read-only string
that's the time
representation of
the value.

ndtDateTime.TimeOnly => "12:30:00 PM"

TimeZone A read-only integer
that represents the
time zone of the
value.

ndtDateTime.TimeZone => 5 (if this is in
EST)

ZoneTime A read-only string
that's the same as
LocalTime, unless
ConvertToZone is
used.

ndtDateTime.LocalTime => "03/02/2001
12:30:00 PM EST"

AdjustDay Adds or subtracts
the specified
number of days
from the value.

Call ndtDateTime.AdjustDay(7)

AdjustHour Adds or subtracts
the specified
number of hours
from the value.

Call ndtDateTime.AdjustHour(12)

AdjustMinute Adds or subtracts
the specified
number of minutes
from the value.

Call ndtDateTime.AdjustMinute(30)

The [unfinished] LotusScript Book Page 99 of 156
 by Julian Robichaux

from the value.

AdjustMonth Adds or subtracts
the specified
number of months
from the value.

Call ndtDateTime.AdjustMonth(3)

AdjustSecond Adds or subtracts
the specified
number of seconds
from the value.

Call ndtDateTime.AdjustSecond(15)

AdjustYear Adds or subtracts
the specified
number of years
from the value.

Call ndtDateTime.AdjustYear(50)

ConvertToZone Changes the
TimeZone and
IsDST properties of
the value.

Call ndtDateTime.ConvertToZone(10, False)

New Used to create a
new
NotesDateTime
value. You can set
the value using a
string, variant, or
the special values
"Today" or
"Yesterday".

Set ndtDateTime = New
NotesDateTime("Today")

SetAnyDate Changes the date
portion of the value
to a wildcard, so
that the value will
match any date.

Call ndtDateTime.SetAnyDate

SetAnyTime Changes the time
portion of the value
to a wildcard, so
that the value will
match any date.

Call ndtDateTime.SetAnyTime

SetNow Changes the value
to the current date
and time.

Call ndtDateTime.SetNow

The [unfinished] LotusScript Book Page 100 of 156
 by Julian Robichaux

and time.

TimeDifference The difference
between two
NotesDateTime
values, in seconds.

ndtDateTime.TimeDifference(ndtDateTime2)
=> 3600, if ndtDateTime minus
ndtDateTime2 is a difference of one hour

Custom Routines
The rest of the chapter will consist of custom functions, subs, and scripts that you might find useful
when dealing with date/time values.

Day of Year Function
This function calculates the day of the year a particular date/time value represents. For example,
January 1st is day 1, February 1st is day 32, etc. The input for this function can be a string, variant,
or number date/time value.

Script – Get the day of the year
Function GetDayOfYear (dateString As Variant) As Integer

'** calculate the day of the year (from 1 to 365) for a given day
On Error Goto processError

Dim firstDay As String
firstDay = "01/01/" & Cstr(Year(dateString))

GetDayOfYear = Cint(Cdbl(Datevalue(dateString)) -

Cdbl(Datevalue(firstDay))) + 1
Exit Function

processError:

Dim errMsg As String
errMsg = "Error " & Cstr(Err) & ": " & Error$
GetDayOfYear = 0
Exit Function

End Function

The logic behind this function is fairly simple. We subtract the date we were given with January 1st
of that year, and the number of days difference between the dates is the day of year for the date. In
order to subtract the dates, we convert them to the numeric representations, subtract them, and get
the integer portion of the remainder. The only special thing we want to do is to add one to the result,
because we want to return a number from 1 to 365, not from 0 to 364 (think about how January 1st
minus January 1st is zero, but January 1st is the first day).

Week of Year Function
This is almost identical to the GetDayOfYear function, except it calculates the week of the year that
a given date/time represents.

Script – Get the day of the year
Function GetWeekOfYear (dateString As Variant) As Integer

'** calculate the week of the year (from 1 to 52) for a given day

The [unfinished] LotusScript Book Page 101 of 156
 by Julian Robichaux

On Error Goto processError

Dim firstDay As String
 Dim dayOfYear as Integer

firstDay = "01/01/" & Cstr(Year(dateString))
dayOfYear = Cint(Cdbl(Datevalue(dateString)) -

Cdbl(Datevalue(firstDay)))

 GetWeekOfYear = (dayOfYear \ 7) + 1

Exit Function

processError:

Dim errMsg As String
errMsg = "Error " & Cstr(Err) & ": " & Error$
GetWeekOfYear = 0
Exit Function

End Function

The same logic applies to this function as it did for the GetDayOfYear function, but after we find
out the day of the year we do an integer division by 7 to determine the week. Also, when we're
calculating the day of the year we don't add one, because the first 7 days are the first week, and we
need to make sure that all 7 of those days are less than the number 7 (do a few calculations on paper
if that doesn't make sense).

Get Day of Week as String
This is really simple, but it's something you'll probably have to do.

Script – Get the string value of the Weekday
Function GetWeekdayString(dateString As Variant) As String
 '** Get the Day of the Week as a string

On Error Goto processError
 Dim dayString as String

 Select Case Weekday(dateString)
 Case 1 : dayString = "Sunday"
 Case 2 : dayString = "Monday"
 Case 3 : dayString = "Tuesday"
 Case 4 : dayString = "Wednesday"
 Case 5 : dayString = "Thursday"
 Case 6 : dayString = "Friday"
 Case 7 : dayString = "Saturday"
 End Select

 GetWeekdayString = dayString

Exit Function

processError:

Dim errMsg As String
errMsg = "Error " & Cstr(Err) & ": " & Error$
GetWeekdayString = ""
Exit Function

End Function

I don't think any explanation is really needed.

The [unfinished] LotusScript Book Page 102 of 156
 by Julian Robichaux

Get Month as String
Another very simple function, that translates the month value of a date into a string.

Script – Get month as string
Function GetMonthString(dateString As Variant) As String
 '** Get the Month as a string
 On Error Goto processError
 Dim monthString as String

 Select Case Month(thisdate.LSLocalTime)
 Case 1 : monthString = "January"
 Case 2 : monthString = "February"
 Case 3 : monthString = "March"
 Case 4 : monthString = "April"
 Case 5 : monthString = "May"
 Case 6 : monthString = "June"
 Case 7 : monthString = "July"
 Case 8 : monthString = "August"
 Case 9 : monthString = "September"
 Case 10 : monthString = "October"
 Case 11 : monthString = "November"
 Case 12 : monthString = "December"
 End Select

 GetMonthString = monthString
 Exit Function

processError:
 Dim errMsg As String
 errMsg = "Error " & Cstr(Err) & ": " & Error$
 GetMonthString = ""
 Exit Function

End Function

Again, this one is probably so simple that no explanation is necessary.

Calculate the Number of Days Between Two Dates
This script was mentioned earlier in the discussion of the numeric representation of dates. It's a way
to determine the number of days between two date values.

Script – Calculate the number of days between two dates
Function DifferenceOfDates (date1 as Variant, _
date2 as Variant) as Long
 '** Get the number of days between two dates
 On Error Goto processError

 DifferenceOfDates = Fix(Cdbl(Cdat(date1))) - Fix(Cdbl(Cdat(date2)))
 Exit Function

processError:
 Dim errMsg As String
 errMsg = "Error " & Cstr(Err) & ": " & Error$
 DifferenceOfDates = 0
 Exit Function

End Function

The [unfinished] LotusScript Book Page 103 of 156
 by Julian Robichaux

As we discussed earlier, the numeric value of a date is a Double, where the integer part of the
number is a date and the decimal part of the number is the time. The Fix function strips the decimal
from the date/time numbers, so that we can just subtract two whole numbers and get the number of
days in between.

Calculate the Amount of Time Between Two Times
Similar to the last function, but with a slightly different technique, this function will take a pair of
time values and return the number of seconds between them.

Script – Calculate the number of seconds between two time values
Function DifferenceOfTimes (time1 as Variant, time2 as Variant) as Long
 '** Get the number of seconds between two times
 On Error Goto processError
 Dim seconds1 as Long
 Dim seconds2 as Long

 seconds1 = (Hour(CDat(time1))*24*60) + (Minute(CDat(time1))*60) + Second(CDat(time1))
 seconds2 = (Hour(CDat(time2))*24*60) + (Minute(CDat(time2))*60) + Second(CDat(time2))

 DifferenceOfTimes = seconds1 - seconds2
 Exit Function

processError:
 Dim errMsg As String
 errMsg = "Error " & Cstr(Err) & ": " & Error$
 DifferenceOfTimes = 0
 Exit Function

End Function

The way this one works is by converting the time value to hours, minutes, and seconds, and figuring
out the difference of seconds from there.

Determine the Number of Weekend Days Between Two Dates
This function starts off using the same technique as the DifferenceOfDates function above, but it
goes on to determine only the number of weekend days that fell between the two dates.

Script – Calculating the number of weekend days between dates
Function CalculateWeekendDays (date1 as Variant, _
date2 as Variant) as Long
 '** Calculate the number of weekend days
 '** between two dates
 On Error Goto processError
 Dim topDate as Variant, bottomDate as Variant
 Dim totalDays as Long, weekendDays as Long

 If (Cdat(date1) > Cdat(date2)) Then
 topDate = Cdat(date1)
 bottomDate = Cdat(date2)
 Else
 topDate = Cdat(date2)
 bottomDate = Cdat(date1)
 End If

 totalDays = Fix(Cdbl(topDate)) - Fix(Cdbl(bottomDate))

 '** divide the total days by 7 and multiply by 2.

The [unfinished] LotusScript Book Page 104 of 156
 by Julian Robichaux

 '** This will give the total weekend days that
 '** probably elapsed
 weekendDays = (totalDays \ 7) * 2

 '** We should add a weekend if the day of the week
 '** that topDate represents is less than the day
 '** of the week that bottomDate represents
 If (Weekday(topDate) < Weekday(bottomDate)) Then
 weekendDays = weekendDays + 2
 End If

 CalculateWeekendDays = weekendDays

 Exit Function

processError:
 Dim errMsg As String
 errMsg = "Error " & Cstr(Err) & ": " & Error$
 CalculateWeekendDays = 0
 Exit Function

End Function

First we calculate the total number of days between the dates. Then we divide this by seven to get
the number of weeks between the dates – there will be one weekend for each full week that's
elapsed between the dates, so multiplying the number of full weeks times 2 (since there's 2 weekend
days in every weekend) will give us the number of weekend days between the days.

The only unusual thing we have to do otherwise is to add a weekend if the higher date is a lesser
day of the week than the lower date. Think of the situation where the lower date is a Friday, and the
higher date is the next Monday: there are 3 days between the dates, so 3 \ 7 will be zero, but there
are 2 weekend days to account for.

Get a Specified Day of a Month
This function will get the specified day of a month (for example, the 2nd Monday in January, or the
last Thursday in November). It's useful in determining holidays, where a holiday is a regular day of
the month.

Script – Getting the specified day of a month
Function GetSpecifiedDay (aMonth As Integer, aYear As Integer, aDay As String,
whichDay As Integer) As String
 '** Get the specified day of the month -- for example, the 2nd Monday
 '** of January
 If (aMonth < 1) Or (aMonth > 12) Then
 GetSpecifiedDay = ""
 Exit Function
 End If

 '** get a date to start with
 Dim tempDate As New NotesDateTime(aMonth & "/01/" & aYear)
 Dim firstDate As NotesDateTime
 Dim dayInt As Integer
 Dim count As Integer

 '** figure out which day we're looking for
 Select Case Ucase(aDay)
 Case "MONDAY"
 dayInt = 2

The [unfinished] LotusScript Book Page 105 of 156
 by Julian Robichaux

 Case "TUESDAY"
 dayInt = 3
 Case "WEDNESDAY"
 dayInt = 4
 Case "THURSDAY"
 dayInt = 5
 Case "FRIDAY"
 dayInt = 6
 Case "SATURDAY"
 dayInt = 7
 Case "SUNDAY"
 dayInt = 1
 Case Else
 GetSpecifiedDay = ""
 Exit Function
 End Select

 '** get the first day of the month of the day type we're looking for
 Dim tempWeekday As Integer
 Dim dayAdjustment As Integer
 tempWeekday = Weekday(tempDate.LSLocalTime)

 If Not (tempWeekday = dayInt) Then
 Call tempDate.AdjustDay(dayInt - tempWeekday)
 If (Month(tempDate.LSLocalTime) <> aMonth) Then
 Call tempDate.AdjustDay(7)
 End If
 End If

 '** if we're only looking for the first day of this type for the month,

'** then we found it
 If (whichDay = 1) Or (whichDay = 0) Then
 GetSpecifiedDay = tempDate.DateOnly
 Exit Function
 Else
 Set firstDate = New NotesDateTime(tempDate.DateOnly)
 End If

 '** otherwise, keep going up in 7 day intervals until we've either found

'** our day or we're at the end of the month
Dim findDay as Integer

 If (whichDay < 0) Then
 '** handle the special case where we're looking for a negative

'** number (for example, you want the 2nd to last Friday)
 findDay = 6
 Else
 findDay = whichDay
 End If

 count = 1
 Do Until (Month(tempDate.LSLocalTime) <> aMonth)
 Call tempDate.AdjustDay(7)
 count = count + 1
 If (Month(tempDate.LSLocalTime) <> aMonth) Then
 Call tempDate.AdjustDay(-7)
 Exit Do
 Elseif (count = findDay) Then
 Exit Do
 End If
 Loop

 '** okay, now that we're here we've either found our date or we're at the

'** end of the month

The [unfinished] LotusScript Book Page 106 of 156
 by Julian Robichaux

 If (whichDay > 0) Then
 GetSpecifiedDay = tempDate.DateOnly
 Else
 '** count backwards for negative whichDays
 Call tempDate.AdjustDay(7 * (whichDay + 1))
 If (Month(tempDate.LSLocalTime) <> aMonth) Then
 '** we went back too far, so use the first day
 GetSpecifiedDay = firstDate.DateOnly
 Else
 GetSpecifiedDay = tempDate.DateOnly
 End If
 End If

 Exit Function

processError:
 Dim errMsg As String
 errMsg = "Error " & Cstr(Err) & ": " & Error$
 GetSpecifiedDay = ""
 Exit Function

End Function

So here's how you would use this function: if you wanted to get the 2nd Monday in January, 2001,
you would call:

secondMonday$ = GetSpecifiedDay(1, 2001, "Monday", 2)

You can also use a negative number for the last parameter if you want to find the day relative to the
end of the month. For example, if you wanted the second to last Thursday in November, you could
call:

secondToLastThursday$ = GetSpecifiedDay(11, 2001, "Thursday", -2)

In this version of the script, we're allowing the user to pass the day of the week as a string, which
adds a little more script to the function but makes the calling function a little more readable. The
comments within the function itself should provide a good basic description of how it works.

Calculating Easter Sunday
While you can calculate most holidays with either a single line of script or by using the previous
function (because they either fall on a particular day of the month or a particular weekday of the
month), the calculation of Easter is a little more difficult. Technically, on the Gregorian calendar,
Easter Sunday falls on the first Sunday after the Paschal full moon, but that's not a date that's
intuitively determined or easily calculated. However, there are algorithms that will perform this
calculation for you. Below is a LotusScript rendition of Butcher's method for calculating Easter (see
http://www.smart.net/~mmontes/nature1876.html for more information about the history of this
function).

Script – Calculating Easter Sunday
Function GetEaster (Byval thisYear As Integer) As String
 '** Butcher's method of calculating Easter - see
 '** http://www.smart.net/~mmontes/nature1876.html
 Dim easterMonth As Integer
 Dim easterDay As Integer

 '** adjust for 2-digit years

http://www.smart.net/~mmontes/nature1876.html
http://www.smart.net/~mmontes/nature1876.html

The [unfinished] LotusScript Book Page 107 of 156
 by Julian Robichaux

 If (thisYear < 100) Then
 If (thisYear < 50) Then
 thisYear = thisYear + 2000
 Else
 thisYear = thisYear + 1900
 End If
 End If

 a = thisYear Mod 19
 b = thisYear \ 100
 c = thisYear Mod 100
 d = b \ 4
 e = b Mod 4
 f = (b + 8) \ 25
 g = (b - f + 1) \ 3
 h = (19 * a + b - d - g + 15) Mod 30
 i = c \ 4
 k = c Mod 4
 l = (32 + 2 * e + 2 * i - h - k) Mod 7
 m = (a + 11 * h + 22 * l) \ 451
 easterMonth = (h + l - 7 * m + 114) \ 31
 p = (h + l - 7 * m + 114) Mod 31
 easterDay = p + 1

 GetEaster = "0" & Cstr(easterMonth) & "/" & Cstr(easterDay) & _

"/" & thisYear

End Function

Please see the web page referenced in the script comments for a discussion of the algorithm.

Calculating Holidays
Now that we have functions that calculate Easter and the date of particular weekdays in a month, we
can write a function that calculates holidays.

Script – Calculating American holidays
Function IsHoliday (thisDate As Variant) As Integer
 '** determine whether the given date is a holiday, based on normal
 '** American holidays
 On Error Goto processError

 Dim thisDateVar As Variant
 Dim thisYear As Integer
 thisDateVar = Datevalue(Cdat(thisDate))
 thisYear = Year(thisDateVar)
 IsHoliday = False

 '** New Year's Day is January 1
 If (thisDateVar = Cdat("01/01/" & thisYear)) Then
 IsHoliday = True
 Exit Function
 End If

 '** MLK Day is 3rd Monday in January
 If (thisDateVar = Cdat(GetSpecifiedDay(1, thisYear, "Monday", 3))) Then
 IsHoliday = True
 Exit Function
 End If

 '** Valentine's Day is February 14
 If (thisDateVar = Cdat("02/14/" & thisYear)) Then

The [unfinished] LotusScript Book Page 108 of 156
 by Julian Robichaux

 IsHoliday = True
 Exit Function
 End If

 '** President's Day is 3rd Monday in February
 If (thisDateVar = Cdat(GetSpecifiedDay(2, thisYear, "Monday", 3))) Then
 IsHoliday = True
 Exit Function
 End If

 '** St. Patrick's Day is March 17
 If (thisDateVar = Cdat("03/17/" & thisYear)) Then
 IsHoliday = True
 Exit Function
 End If

 '** Easter is a Sunday, which can be calculated by algorithm
 Dim easterDay As New NotesDateTime(GetEaster(thisYear))
 If (thisDateVar = Cdat(easterDay.DateOnly)) Then
 IsHoliday = True
 Exit Function
 End If

 '** Ash Wednesday is 46 days before Easter
 Call easterDay.AdjustDay(-46)
 If (thisDateVar = Cdat(easterDay.DateOnly)) Then
 IsHoliday = True
 Exit Function
 End If

 '** Mother's Day is the 2nd Sunday of May
 If (thisDateVar = Cdat(GetSpecifiedDay(5, thisYear, "Sunday", 2))) Then
 IsHoliday = True
 Exit Function
 End If

 '** Memorial Day is the last Monday in May
 If (thisDateVar = Cdat(GetSpecifiedDay(5, thisYear, "Monday", -1))) Then
 IsHoliday = True
 Exit Function
 End If

 '** Father's Day is the 3rd Sunday in June
 If (thisDateVar = Cdat(GetSpecifiedDay(6, thisYear, "Sunday", 3))) Then
 IsHoliday = True
 Exit Function
 End If

 '** Independence Day is July 4
 If (thisDateVar = Cdat("07/04/" & thisYear)) Then
 IsHoliday = True
 Exit Function
 End If

 '** Labor Day is the first Monday in September
 If (thisDateVar = Cdat(GetSpecifiedDay(9, thisYear, "Monday", 1))) Then
 IsHoliday = True
 Exit Function
 End If

 '** Columbus Day is 2nd Monday in October
 If (thisDateVar = Cdat(GetSpecifiedDay(10, thisYear, "Monday", 2))) Then
 IsHoliday = True

The [unfinished] LotusScript Book Page 109 of 156
 by Julian Robichaux

 Exit Function
 End If

 '** Halloween is October 31
 If (thisDateVar = Cdat("10/31/" & thisYear)) Then
 IsHoliday = True
 Exit Function
 End If

 '** Veteran's Day is November 11
 If (thisDateVar = Cdat("11/11/" & thisYear)) Then
 IsHoliday = True
 Exit Function
 End If

 '** Thanksgiving is 4th Thursday in November
 If (thisDateVar = Cdat(GetSpecifiedDay(11, thisYear, "Thursday", 4))) Then
 IsHoliday = True
 Exit Function
 End If

 '** Christmas is December 25th
 If (thisDateVar = Cdat("12/25/" & thisYear)) Then
 IsHoliday = True
 Exit Function
 End If

 Exit Function

processError:
 Dim errMsg As String
 errMsg = "Error " & Cstr(Err) & ": " & Error$
 IsHoliday = False
 Exit Function

End Function

This function simply determines whether or not a given date is a holiday or not. You could also
modify the function to export all the dates as strings, display them to the user, etc.

Determining Whether or not a Day is a Valid Business Day
A simple extension of the previous function is one that determines whether or not a given day is a
valid business day. For this example, we'll consider a business day to be any day that's not a
Saturday, Sunday, or a calculated holiday.

Script – Determine whether or not a day is a valid business day
Function IsBusinessDay (thisDate As Variant) As Integer
 '** determine whether the given date is a valid business day
 '** (i.e. -- not on a weekend, and not a holiday)
 On Error Goto processError

 thisDateVar = Datevalue(Cdat(thisDate))
 IsBusinessDay = True

 If (Weekday(thisDateVar) = 1) Or (Weekday(thisDateVar) = 7) Then
 IsBusinessDay = False
 Elseif (IsHoliday(thisDateVar)) Then
 '** use the custom IsHoliday function to check for holidays
 IsBusinessDay = False
 End If

The [unfinished] LotusScript Book Page 110 of 156
 by Julian Robichaux

 Exit Function

processError:
 Dim errMsg As String
 errMsg = "Error " & Cstr(Err) & ": " & Error$
 IsBusinessDay = False
 Exit Function

End Function

The process here is pretty simple: we use the Weekday function so see if the day is a Saturday or a
Sunday, and we use the custom IsHoliday function from earlier in the chapter to see if the day is on
a holiday. If any of these things are true, then the given date is not a valid business date; otherwise,
it is.

Converting a Date/Time to a Valid "Business Time"
Now that we have a function that will determine whether or not a day is a business day or not, it
might be interesting to create a function that will check to see if a given date is on a business day,
within specified business hours. If not, we can convert it to a valid business day during the specified
hours.

Script – Converting a date/time to a business day, during specified business hours
Function ConvertToBusinessTime (thisDate As Variant, startTime As Variant, endTime As
Variant) As String
 '** This function converts a given date/time to "business time",
 '** based on the startTime and endTime values you give it.
 On Error Goto processError

 Dim tempTime As NotesDateTime
 Dim thisDateString As String
 Dim startHour As Integer, startMin As Integer, startSec As Integer
 Dim endHour As Integer, endMin As Integer, endSec As Integer

 thisDateString = Cstr(Cdat(thisDate))
 startHour = Hour(Cdat(startTime))
 startMin = Minute(Cdat(startTime))
 startSec = Second(Cdat(startTime))
 endHour = Hour(Cdat(endTime))
 endMin = Minute(Cdat(endTime))
 endSec = Second(Cdat(endTime))

 '** If the value doesn't have a time field, set it to startTime
 If (Instr(thisDateString, ":") > 0) Then
 Set tempTime = New NotesDateTime(thisDateString)
 Else
 Set tempTime = New NotesDateTime(thisDateString & " " &
Cstr(Timevalue(startTime)))
 End If

 '** Convert the initial time to a "business" time, where:
 '** - anything before start-of-business time is changed to
 '** start-of-business time
 '** - anything after end-of-business time is changed to
 '** start-of-business time the next day
 '** - anything on a weekend is moved to the next Monday at
 '** start-of-business time
 Dim tTime As Variant, sTime As Variant, eTime As Variant
 tTime = Fraction(Cdat(tempTime.LSLocalTime))

The [unfinished] LotusScript Book Page 111 of 156
 by Julian Robichaux

 sTime = Fraction(Cdat(startTime))
 eTime = Fraction(Cdat(endTime))

 '** we're comparing both the time values and the string versions
 '** of the time values because there's a bug in some versions of
 '** Notes where the decimal representation of a time value
 '** with a date is slightly different than the decimal representation
 '** of the same time value without a date (for example,
 '** Fraction(Cdbl(Cdat("01/01/2001 5:00 PM"))) = .708333333335759 but
 '** Fraction(Cdbl(Cdat("5:00 PM"))) = .708333333333333)
 If (tTime < sTime) And Not (Cstr(tTime) = Cstr(sTime)) Then
 '** If the time is less than startTime, change to startTime
 Call tempTime.AdjustSecond(startSec - Second(tempTime.LSLocalTime), True)
 Call tempTime.AdjustMinute(startMin - Minute(tempTime.LSLocalTime), True)
 Call tempTime.AdjustHour(startHour - Hour(tempTime.LSLocalTime), True)
 Elseif (tTime > eTime) And Not (Cstr(tTime) = Cstr(eTime)) Then
 '** If it's after endhour, set the time to startTime the next morning
 Call tempTime.AdjustSecond(startSec - Second(tempTime.LSLocalTime), True)
 Call tempTime.AdjustMinute(startMin - Minute(tempTime.LSLocalTime), True)
 Call tempTime.AdjustHour(startHour - Hour(tempTime.LSLocalTime), True)
 Call tempTime.AdjustDay(1, False)
 End If

 '** And finally, adjust for weekends and holidays
 Do While (IsBusinessDay (tempTime.LSLocalTime) = False)
 Call tempTime.AdjustSecond(startSec - Second(tempTime.LSLocalTime), True)
 Call tempTime.AdjustMinute(startMin - Minute(tempTime.LSLocalTime), True)
 Call tempTime.AdjustHour(startHour - Hour(tempTime.LSLocalTime), True)
 Call tempTime.AdjustDay(1, False)
 Loop

 ConvertToBusinessTime = tempTime.LSLocalTime
 Exit Function

processError:
 Dim errmess As String
 errmess = Error$
 ConvertToBusinessTime = ""
 Exit Function

End Function

The inline comments within the script should give you a good idea of how the script works. The
only really unusual thing we have to do is double-check our time comparisons, because some
versions of Notes internally convert time values with dates slightly differently than time values
without dates. For example, the script:

Fraction(Cdbl(Cdat("01/01/2001 5:00 PM")))

gives us a value of .708333333335759, but the script:

Fraction(Cdbl(Cdat("5:00 PM")))

gives us a value of .708333333333333. To work around this, we compared both the numeric
representations of the times and the string representations.

The [unfinished] LotusScript Book Page 112 of 156
 by Julian Robichaux

Dealing with Date Ranges
So far, I've been avoiding a discussion of date/time ranges, which are not natively addressed in
LotusScript. There is a NotesDateTimeRange class, but all that really does is allow you to take a
date range from a Notes document and get the start and end dates. If you really have a need to deal
with date ranges, you'll need much more functionality than that.

Below I've included a class that you can use to manipulate not only date/time ranges, but also lists
of dates and times as well. Because it's so long, I haven't included too many comments in the script,
but each of the routines within the class are fairly short so you should be able to figure out what's
going on if you read through it piece by piece.

Script – DateRange class
Class DTRange
 '** member variables
 Private hTime As Variant
 Private lTime As Variant
 Private timeList List As String
 Private delim As String

 '** constructor
 Sub New (timeRangeString As String)
 Call InitializeClass()
 Call AddTimeStringToList(timeRangeString)
 End Sub

 '** destructor
 Sub Delete
 Call EraseList()
 End Sub

 '**
 '** public properties
 Public Property Get HighTime As String
 '** get the highest date/time value in the list
 If Isnull(hTime) Then
 HighTime = ""
 Else
 HighTime = Cstr(hTime)
 End If
 End Property

 Public Property Get LowTime As String
 '** get the lowest date/time value in the list
 If Isnull(lTime) Then
 LowTime = ""
 Else
 LowTime = Cstr(lTime)
 End If
 End Property

 '**
 '** public methods
 Public Sub Add (timeRangeString As String)
 '** add a new time or set of times to the list
 Call AddTimeStringToList(timeRangeString)
 End Sub

The [unfinished] LotusScript Book Page 113 of 156
 by Julian Robichaux

 Public Function AddFromDoc (doc As NotesDocument, fieldName As String) As Integer
 '** get the date or a date range from a field on a NotesDocument
 On Error Goto processError

 Dim item As NotesItem
 Set item = doc.GetFirstItem("DateField")
 Call AddTimeStringToList(item.text)
 Exit Function

processError:
 Dim errMsg As String
 errMsg = Error$
 Exit Function

 End Function

 Public Function IsInRange (timeRangeString As String) As Integer
 '** check to see if a given time is within the times in timeList
 IsInRange = CheckRangeForTime(timeRangeString)
 End Function

 Public Function ExportListAsString () As String
 '** give the timeList to the user as a string
 Forall element In timeList
 If (ExportListAsString = "") Then
 ExportListAsString = element
 Else
 ExportListAsString = ExportListAsString & delim & element
 End If
 End Forall
 End Function

 Public Function ExportListAsArray () As Variant
 '** give the timeList to the user as an array
 Redim tempArray(0) As String
 Dim count As Integer

 Forall element In timeList
 Redim Preserve tempArray(count) As String
 tempArray(count) = element
 count = count + 1
 End Forall

 ExportListAsArray = tempArray
 End Function

 Public Function RemoveItem (timeRangeString As String) As Integer
 '** remove a specified item from the timeList
 Dim tempString As String, fooVar1 As Variant, fooVar2 As Variant
 tempString = ConvertRange(timeRangeString, fooVar1, fooVar2)

 If Iselement(timeList(tempString)) Then
 Erase timeList(tempString)
 Call SetHighAndLowTimes()
 RemoveItem = True
 Else
 RemoveItem = False

The [unfinished] LotusScript Book Page 114 of 156
 by Julian Robichaux

 End If
 End Function

 Public Sub EraseList ()
 '** erase the current timeList
 Erase timeList
 Call InitializeClass()
 End Sub

 '**
 '** private internal functions and subs
 Private Sub InitializeClass ()
 delim = ";"
 hTime = Null
 lTime = Null
 End Sub

 Private Function AddTimeStringToList (timeRangeString As String)
 '** timeRangeString should be a semi-colon delimited
 '** list of times or time ranges
 Dim tempString As String, tempElement As String
 Dim pos As Integer, lastPos As Integer
 Dim fooVar1 As Variant, fooVar2 As Variant
 tempString = Trim$(timeRangeString)

 If (tempString = "") Then
 Exit Function
 End If

 '** get all the comma-delimited elements
 lastPos = 1
 pos = Instr(lastPos, tempString, delim)
 Do Until (pos < 1)
 tempElement = Trim$(Mid$(tempString, lastPos, pos - lastPos))
 If IsValidRange(tempElement) Then
 timeList(tempElement) = ConvertRange(tempElement, fooVar1, fooVar2)
 End If
 lastPos = pos + 1
 pos = Instr(lastPos, tempString, delim)
 Loop

 '** get the last element
 tempElement = Trim$(Right$(tempString, Len(tempString) - lastPos))
 If IsValidRange(tempElement) Then
 timeList(tempElement) = ConvertRange(tempElement, fooVar1, fooVar2)
 End If

 '** reset the internal high and low times
 Call SetHighAndLowTimes()
 End Function

 Private Function IsValidRange (timeRangeString As String) As Integer
 '** check to see if a timeRangeString is a valid format
 Dim leftRange As Variant, rightRange As Variant

 Call GetLeftAndRightRanges(timeRangeString, leftRange, rightRange)
 If Isnull(leftRange) And Isnull(rightRange) Then
 IsValidRange = False
 Else

The [unfinished] LotusScript Book Page 115 of 156
 by Julian Robichaux

 IsValidRange = True
 End If

 End Function

 Private Function GetLeftAndRightRanges (timeRangeString As String, _
 retLeftRange As Variant, retRightRange As Variant) As Integer
 '** get the left and the right parts of a time range
 On Error Goto processError
 Dim pos As Integer

 pos = Instr(timeRangeString, "-")
 If (pos > 0) Then
 retLeftRange = Cdat(Trim$(Left$(timeRangeString, pos - 1)))
 retRightRange = Cdat(Trim$(Right$(timeRangeString, Len(timeRangeString) -
pos)))
 GetLeftAndRightRanges = True
 Else
 retLeftRange = Cdat(Trim$(timeRangeString))
 retRightRange = retLeftRange
 GetLeftAndRightRanges = False
 End If

 Exit Function

processError:
 Dim errMsg As String
 errMsg = Error$
 GetLeftAndRightRanges = False
 Exit Function

 End Function

 Private Function ConvertRange (timeRangeString As String, _
 retLeftRange As Variant, retRightRange As Variant) As String
 '** convert a date or date range to a formatted string for storage
 On Error Goto processError
 Dim leftRange As Variant, rightRange As Variant
 retLeftRange = Null
 retRightRange = Null

 Call GetLeftAndRightRanges(timeRangeString, leftRange, rightRange)
 If Isnull(leftRange) And Isnull(rightRange) Then
 ConvertRange = ""
 Elseif (leftRange = rightRange) Then
 ConvertRange = Cstr(leftRange)
 retLeftRange = leftRange
 retRightRange = rightRange
 Elseif (leftRange > rightRange) Then
 ConvertRange = Cstr(rightRange) & " - " & Cstr(leftRange)
 retLeftRange = rightRange
 retRightRange = leftRange
 Else
 ConvertRange = Cstr(leftRange) & " - " & Cstr(rightRange)
 retLeftRange = leftRange
 retRightRange = rightRange
 End If

 Exit Function

processError:

The [unfinished] LotusScript Book Page 116 of 156
 by Julian Robichaux

 Dim errMsg As String
 errMsg = Error$
 ConvertRange = ""
 Exit Function

 End Function

 Private Sub SetHighAndLowTimes()
 '** find the high and low date/times in the timeList
 On Error Goto processError
 Dim leftRange As Variant, rightRange As Variant

 Forall element In timeList
 Call GetLeftAndRightRanges(element, leftRange, rightRange)
 If Isnull(hTime) Then
 hTime = rightRange
 Elseif (leftRange > hTime) Then
 hTime = rightRange
 End If

 If Isnull(lTime) Then
 lTime = leftRange
 Elseif (leftRange < lTime) Then
 lTime = leftRange
 End If
 End Forall

 Exit Sub

processError:
 Dim errMsg As String
 errMsg = Error$
 Exit Sub

 End Sub

 Private Function CheckRangeForTime (timeRangeString As String) As Integer
 '** check to see if a given date/time is in timeList
 On Error Goto processError
 Dim leftRange As Variant, rightRange As Variant
 Dim leftRange2 As Variant, rightRange2 As Variant
 Dim areTwoValues As Integer

 timeRangeString = ConvertRange(timeRangeString, leftRange, rightRange)

 '** do an initial check to see if we're outside the low
 '** and high times in our list. If so, we can exit early
 If (leftRange > hTime) Or (rightRange < lTime) Then
 CheckRangeForTime = False
 Exit Function
 End If

 '** if we got here, we need to check against the whole list
 Forall element In timeList
 areTwoValues = GetLeftAndRightRanges(element, leftRange2, rightRange2)
 If areTwoValues Then
 If Not((leftRange > rightRange2) Or (rightRange < leftRange2)) Then
 CheckRangeForTime = True
 Exit Function
 End If
 Else

The [unfinished] LotusScript Book Page 117 of 156
 by Julian Robichaux

 If (leftRange = leftRange2) Or (rightRange = rightRange2) Then
 CheckRangeForTime = True
 Exit Function
 End If
 End If
 End Forall

 Exit Function

processError:
 Dim errMsg As String
 errMsg = Error$
 CheckRangeForTime = False
 Exit Function

 End Function

End Class

If you want to try out some of the class functionality, add this class to an agent and put this script in
the Initialize sub.

Sub Initialize
 Dim testRange As New DTRange("")
 testRange.Add("1/1/02; 1/10/02 - 1/20/02")

 Print "High = " & testRange.HighTime & "; Low = " & testRange.LowTime

 If testRange.IsInRange("01/10/2002") Then
 Print "In Range"
 Else
 Print "Out of Range"
 End If

 Dim testArray As Variant
 testArray = testRange.ExportListAsArray

 Print testRange.ExportListAsString
 testRange.RemoveItem("01/1/02")
 testRange.Add("01/25/2002")
 Print testRange.ExportListAsString

End Sub

As always, you can step through the script using the LotusScript debugger to really see what's going
on.

The advantage to using a class like this is that you can have a whole list of dates or times that you
want to compare against, and you can then compare against all of them at once, even if some of the
dates or times are actually ranges of dates and times. AddFromDoc method even allows you to pull
a range of dates in from a multi-value date field on a form, which can prove very useful.

The [unfinished] LotusScript Book Page 118 of 156
 by Julian Robichaux

Working with Files
From within LotusScript, you have the ability to access and manipulate files, which allows you to
read and write data to external sources rather easily. There are several different ways that
LotusScript can access files natively:

• Random – which is a file with structured data, normally only readable through other
LotusScript programs

• Binary – which is any type of file, although if you open text files as Binary then you'll have
to make sure to check for non-text characters (like linefeeds)

• Input – which is a read-only text file, starting from the beginning of the file

• Output – which is a write-only text file, although if the file already exists, it is overwritten

• Append – which is a write-only text file, starting from the end of the file (if the file doesn't
exist, an error occurs)

Random and Binary files can be opened as either read-only, write-only, or read-write; the other
methods will open files as specified above. If no method for opening a file is specified, then the file
will be opened in Random mode. You can also specify the type of file sharing used when the file is
opened: either Shared (the default), Lock Read, Lock Write, and Lock Read Write. The general
syntax for opening a file for use is:

Open fileName
 [For { Random | Input | Output | Append | Binary }]
 [Access { Read | Read Write | Write }]
 [{ Shared | Lock Read | Lock Read Write | Lock Write }]
 As [#]fileNumber
 [Len = recLen]

The pound sign (#) before fileNumber is entirely optional, and the function works the same with or
without it. For example, in its simplest form, you can open a file with the statement:

Open C:\Myfile.foo As 1

This will accept all the defaults for the Open statement, which means that the file will be opened in
Random mode, with Read-Write access and Shared file locking and a record length of 128. More
typically, you might want to open a file like this:

Open C:\Myfile.txt For Input As 1

or:

Open C:\Myfile.bin For Binary Read As 1

A useful function to use in conjunction with the Open statement is the Freefile function, which will
automatically get a free file handle for use in opening your file. You can normally access a file
without any problems by specifying any number from 1 to 255 as a file number when opening your
file, but if you want to be safe, you can write some code like this:

The [unfinished] LotusScript Book Page 119 of 156
 by Julian Robichaux

Dim fileNum as Integer
fileNum = Freefile
Open C:\Myfile.txt For Output Lock Write As fileNum

This will ensure that you have an unused file number when you're opening the file. It's also good
coding practice, since many of the other file manipulation functions use the file number to access an
open file, and using a variable to refer to the file number makes the code much easier to read and
maintain.

Before we get too much further, let's summarize the LotusScript functions and statements that are
used to access, manipulate, and get information about files.

Function/Statement Usage Example

ChDir

Sets the directory to use for file
access (for when a file name is
specified but no directory is given).

ChDir "C:\TEMP"

ChDrive

Sets the drive letter to use for file
access (for when a file path is
specified but no drive is given).

ChDrive "D"

Close
Closes specified open files (writes
buffered data first).

Close #1, #2

CurDir[$] Indicates the current directory. Print CurDir$

CurDrive[$] Indicates the current drive letter. Print CurDrive$

Dir[$]

Returns a file or directory name,
based on a name or wildcard
specification you give it. Can also
be used multiple times to step
through a directory.

firstFile$ = Dir$("C:*.*")

EOF

Boolean value that indicates
whether the end of a file has been
reached.

If EOF(fileNum%) Then Exit Do

FileAttr

Returns either a number indicating
how an open file has been opened
(Binary, Random, etc.), or the
operating system's file handle
number for an open file.

FileAttr(fileNum%, 1)

FileCopy Copies a file.
FileCopy "C:\MyFile.txt"
"C:\MyNewFile.txt"

The [unfinished] LotusScript Book Page 120 of 156
 by Julian Robichaux

FileDateTime

Returns a string with the date and
time a specified file was last
modified (the file does not have to
be currently open)

FileDateTime("C:\MyFile.txt")

FileLen

Returns the length of a file, in bytes
(the file does not have to be
currently open)

FileLen("C:\MyFile.txt")

FreeFile
Returns the next available unused
file number, from 1 to 255.

fileNum% = FreeFile()

Get

Gets data from a binary or random
file and puts it into a variable. For a
Binary file, you will generally want
to use a fixed-length string as your
variable. A pound sign (#) before
the file number is required.

Get #fileNum%, 1, fileContents

GetAttr Same as GetFileAttr

GetFileAttr

Returns the file-system attributes of
a file or directory (Read-Only,
Hidden, etc.).

GetFileAttr("C:\MyFile.txt")

Input

There are actually two different
Input commands. The Input
statement reads comma-delimited
data from a sequential file into one
or more variables, and is the
opposite of the Write statement.
The Input function reads a fixed
amount of data from a sequential or
binary file into a string variable. If
you're using the function to get data
from a Binary file, keep in mind
that this function retrieves a certain
number of characters, not bytes. For
the Input statement, a pound sign
(#) before the file number is
required.

Statement:

Input #fileNum%, field1$,
field2%

Function:

textString$ = Input$(500,
#fileNum%)

InputB[$]

Reads a specified number of bytes
from a sequential or binary file into
a string variable.

textString$ = InputB$(500,
#fileNum%)

The [unfinished] LotusScript Book Page 121 of 156
 by Julian Robichaux

InputBP[$]

Reads a specified number of bytes
from a sequential or binary file into
a string variable, using the
platform-native character set.

textString$ = InputBP$(500,
#fileNum%)

Kill Deletes a file. Kill "C:\MyFile.txt"

Line Input

Reads a line from a sequential file,
up to but not including any carriage
returns or linefeeds (a pound sign
(#) before the file number is
required). This is the opposite of
the Print statement.

Line Input #fileNum%,
lineOfText$

Loc
Returns your current position in a
file (in bytes).

filePos& = LOC(fileNum%)

Lock

Locks either a record (for a
Random file), a byte (for a Binary
file) or the whole file (for a
Sequential file), so that other
processes can't modify the data. Be
very sure to use the Unlock
statement after you're done.

Lock #fileNum%, 1 To 20

LOF

Returns the length of a file, in
bytes. The file must have already
been opened using the Open
statement.

fileSize& = LOF(fileNum%)

MkDir Creates a directory. MkDir "C:\MyNewDir"

Name Renames a file or directory.
Name "C:\MyFile.txt"
"C:\MyNewFile.txt"

Open
Opens a file, so that you can read or
write data.

Open fileName$ For Output As
fileNum%

Print #

Writes text to a Sequential file,
terminated with a newline character
(a pound sign (#) before the file
number is required).

Print #fileNum%, "This is a new
line of text."

Put

Writes data to a Binary or a
Random file (a pound sign (#)
before the file number is required).

Put #fileNum%, stuff$

The [unfinished] LotusScript Book Page 122 of 156
 by Julian Robichaux

Reset
Closes all open files (writes
buffered data first).

Reset

RmDir

Deletes a directory from the file
system (the directory must be
empty).

RmDir "C:\BadDir"

Seek

Sets or retrieves the byte position
(for a Binary file) or the record
number (for a Random file).

Seek(fileNum%)

or

Seek #fileNum%, 1

SetFileAttr

Sets file attributes (Read-Only,
Hidden, etc.). Should not be used
on a file that's already Open.

SetFileAttr fileName$,
ATTR_READONLY +
ATTR_HIDDEN

Spc

Used in conjunction with the Print
statement to insert a specified
number of spaces to a Sequential
file.

Print #fileNum%, "some text";
Spc(1); "some more text"

Tab

Used to specify the starting
character position of the text
written by a Print or Print #
statement.

Print #fileNum%, "one";
Tab(10); "two"

Unlock

Unlocks data that has been
previously locked by the Lock
statement. The parameters used
must exactly match the ones used in
the corresponding Lock statement.

Unlock #fileNum%, 1 To 20

Width

Sets the line length to be used by
the Print statement, when writing to
a Sequential file. By default, the
line length is unlimited (a pound
sign (#) before the file number is
required).

Width #fileNum%, 50

Write

Similar to the Print statement, but
comma-delimits multiple pieces of
data.

Write #fileNum%, field1$,
field2%

The [unfinished] LotusScript Book Page 123 of 156
 by Julian Robichaux

While the functions and statements above are used to access and manipulate files, there are also
some related functions that access the operating system environment. Because we'll be using some
of these functions in the scripts later in the chapter, they are also summarized here for reference.

Function/Statement Usage Example

ActivateApp
Makes a window the active window,
based on the window title.

ActivateApp "Microsoft Word"

AppActivate Same as ActivateApp

Beep Makes the computer beep. Beep

DoEvents Same as Yield

Environ[$]

Returns the contents of an
environment variable from the
operating system (note that this is an
operating system environment
variable, not a Notes environment
variable).

thePath$ = Environ$("PATH")

Shell

Starts an external program (EXE,
BAT, COM, or PIF file). The
LotusScript routine will continue
operation immediately after the
shelled program begins.

Shell("Notepad.exe", 1)

Yield
Frees operating system resources
during script execution.

For i% = 1 To 1000

Yield

Next

Custom Routines
The functions and subs in this chapter are a combination of routines that interact directly with files
and routines that act as "helper" functions.

Get the Default File Separator for the Operating System You're On
If your script is running on only one operating system type, then you won't need this function,
which will determine the file separator for the operating system you're on. However, if you're
running on multiple OS's, this may come in handy

The [unfinished] LotusScript Book Page 124 of 156
 by Julian Robichaux

Script – Get default file separator
Function GetFileSeparator () As String

Dim session As New NotesSession

Select Case session.Platform
Case"Macintosh"

GetFileSeparator = ":"
Case "UNIX"

GetFileSeparator = "/"
Case Else

GetFileSeparator = "\"
End Select

End Function

We'll be calling this function in several of the scripts later in the chapter, so please be sure to make
the appropriate modifications to the scripts as necessary.

Get File Path and File Name from a Path + File Name String
When dealing with files in LotusScript, you'll often run into the situation where you have a file
name that includes the full path of the file, and you'll need to parse out the path and the file name
from that string. The following functions will do this for you.

Script – Get file path
Function GetFilePath (fullFileName As String) As String
 '** given the full file path of a file (like "c:\temp\blah.txt"),
 '** this function will return the path portion of the file path,
 '** including the trailing "\" (like "c:\temp\")
 Dim pos As Integer, lastPos As Integer
 Dim slash as String

 slash = GetFileSeparator()

 pos = InStr(fullFileName, slash)
 lastPos = pos

 Do While (pos > 0)
 lastPos = pos
 pos = InStr(pos + 1, fullFileName, slash)
 Loop

 GetFilePath = Left$(fullFileName, lastPos - 1)

End Function

Script – Get file name
Function GetFileName (fullFileName As String) As String
 '** given the full file path of a file (like "c:\temp\blah.txt"),
 '** this function will return the file name (like "blah.txt")
 Dim pos As Integer, lastPos As Integer
 Dim tempFileName As String
 Dim slash as String

 slash = GetFileSeparator()

 pos = InStr(fullFileName, slash)
 lastPos = pos

 Do While (pos > 0)

The [unfinished] LotusScript Book Page 125 of 156
 by Julian Robichaux

 lastPos = pos
 pos = InStr(pos + 1, fullFileName, slash)
 Loop

 tempFileName = Right$(fullFileName, Len(fullFileName) - lastPos)

 GetFileName = tempFileName

End Function

Both functions do about the same thing, which is to find the position of the last "\" character in the
string, and return either everything to the left or everything to the right of it. A similar function that
you might need is one that gets the file extension of a file name:

Script – Get file extension
Function GetFileExtension (fullFileName As String) As String
 '** given the full file path of a file (like "c:\temp\blah.txt"),
 '** this function will return the file name extension (like "txt")
 Dim pos As Integer, lastPos As Integer
 Dim tempFileName As String
 Dim slash as String

 slash = GetFileSeparator()

 '** first, get the file name itself
 pos = InStr(fullFileName, slash)
 lastPos = pos

 Do While (pos > 0)
 lastPos = pos
 pos = InStr(pos + 1, fullFileName, slash)
 Loop

 tempFileName = Right$(fullFileName, Len(fullFileName) - lastPos)

 '** then, get everything to the right of the last period
 pos = InStr(tempFileName, ".")
 lastPos = pos

 Do While (pos > 0)
 lastPos = pos
 pos = InStr(pos + 1, tempFileName, ".")
 Loop

 If (lastPos < 1) Then
 lastPos = Len(tempFileName)
 End If

 GetFileExtension = Right$(tempFileName, Len(tempFileName) - lastPos)

End Function

At first this function may seem like a bit of overkill for what it does, but you need to consider a few
things. First, directory names can have dots in them, so you can't just find the first dot and then get
everything to the right of it. Second, a file name can have no dots at all, so you can't just find the
last dot and get everything to the right. Of course, if you wanted to call the GetFileName function at
the beginning of this function, you can skip about half the script.

The [unfinished] LotusScript Book Page 126 of 156
 by Julian Robichaux

Also, if you know that you're only going to be using these functions with R5 or higher, you can use
StrLeftback and StrRightback to simplify these functions further.

Create a Directory, Including All Subdirectories
Even though the LotusScript MkDir function will create new directories for you, it will fail if any
part of the directory tree underneath the directory doesn't exist. The following function will take
care if that for you.

Script – Create a directory with subdirectories
Function MakeDir (directory As String) As Integer
 '** This function will check for the existence of a directory,
 '** and try to create it if it doesn't exist

 On Error Goto processError

 Dim tempString As String
 Dim pos As Integer, startPos As Integer
 Dim slash as String

 slash = GetFileSeparator()

 If (directory = "") Then
 MakeDir = False
 Exit Function
 End If

 '** Create the directory (at all levels) if it doesn't exist
 '** figure out where the directory path starts
 If (Instr(directory, ":") > 0) Then
 '** it's a drive path of some sort
 startPos = Instr(directory, ":") + 2
 Elseif (Left$(directory, 2) = "\\") Then
 '** it's a UNC path
 startPos = 3
 Elseif (Left$(directory, 1) = slash) Then
 '** it's a relative path
 startPos = 2
 Else
 startPos = 1
 End If

 pos = Instr(startPos, directory, slash)
 Do While (pos > 0)
 tempString = Left$(directory, pos - 1)
 If (Dir$(tempString, 16) = "") Then
 Mkdir tempString
 End If
 pos = Instr(pos + 1, directory, slash)
 Loop

 '** now try to create the whole directory
 If (Dir$(directory, 16) = "") Then
 Mkdir directory
 End If

 MakeDir = True
 Exit Function

The [unfinished] LotusScript Book Page 127 of 156
 by Julian Robichaux

processError:
 Dim errMsg As String
 errMsg = "Error " & Cstr(Err) & ": " & Error$
 MakeDir = False
 Exit Function

End Function

The logic is pretty straightforward: find the lowest subdirectory and start building the directory tree
from the bottom up.

Now that we have a few helper functions under our belt, let's start looking at some functions that
actually work with files.

Make Sequential Output File
At first glance, it may seem silly to write an entire function just to create a Sequential file for output
– after all, you can do that with a single statement, can't you? The advantage to wrapping this
functionality into a function is that you can do some good error checking, and you can do a few
things to avoid errors in the process.

Script – Make a sequential output file
Function MakeOutputFile (fileName As String, overwrite As Integer) As Integer
 '** This function will create a file based on the filename & path that

'** you pass. If overwrite is True, it will overwrite any existing file
'** that is there. If it's False and the file already exists, the
'** function will append to the file.

 '** All errors will return a number less than 1. Otherwise, the function
'** returns the file number handle for file access.

 On Error Goto processError

 Dim fileNum As Integer
 Dim tempFileName As String

 '** If no filename is passed, just return
 If (Trim(fileName) = "") Then
 MakeOutputFile = 0
 Exit Function
 End If

 '** Make sure that the directory exists, using the
 '** user-defined MakeDir and GetFilePath functions
 If Not MakeDir(GetFilePath(fileName)) Then
 MakeOutputFile = -1
 Exit Function
 End If

 '** Try to create a file, based on the overwrite setting
 fileNum = Freefile()
 If (overwrite) Then
 Open fileName For Output As fileNum
 Else
 If (Dir$(fileName) = "") Then
 Open fileName For Output As fileNum
 Else
 Open fileName For Append As fileNum
 End If
 End If

The [unfinished] LotusScript Book Page 128 of 156
 by Julian Robichaux

 MakeOutputFile = fileNum
 Exit Function

processError:
 Dim errMess As String
 errMess = Error
 MakeOutputFile = 0
 Exit Function

End Function

You can see the extra logic applied in this function, that does a little more than just open a file for
output. First, it creates the directory path, if it doesn't already exist (using the MakeDir and
GetFilePath functions from earlier in the chapter). Then it allows you to decide what to do if the file
already exists, either overwrite it or append to it. It's a little extra overhead if you just want to open
a file to write to, but it can save you lots of debugging time later.

Getting a Unique File Name
Another thing you might need to do is to make sure that the name of the file you are going to create
is unique. The following function shows one way to do that.

Script – Create a unique file name
Function GetUniqueFilename (fileName As String) As String
 '** This function will generate a unique fileName in a directory,

'** based on the original fileName you provide. It scans the given
'** directory for your fileName, and adds sequential numbers to
'** the end of the fileName until it is unique.

 On Error Goto processError

 Dim count As Integer
 Dim tempFileName As String
 Dim fileNameLeft As String
 Dim fileNameRight As String
 Dim newFileName As String
 Dim dirName As String
 Dim tempString As String
 Dim slash as String

 slash = GetFileSeparator()

 count = 1

 '** If no fileName is passed, just return
 If (Trim(fileName) = "") Then
 GetUniquefileName = ""
 Exit Function
 End If

 '** Make sure that the directory exists, using the
 '** user-defined functions GetFilePath and MakeDir
 dirName = GetFilePath(fileName)
 If Not MakeDir(dirName) Then
 GetUniqueFileName = ""
 Exit Function
 End If

 '** Use the user-defined functions GetFileName and

The [unfinished] LotusScript Book Page 129 of 156
 by Julian Robichaux

'** GetFileExtension to get the fileName and extension
 tempString = GetFileName(fileName)
 fileNameRight = GetFileExtension(tempString)
 fileNameLeft = Left$(tempString, Len(tempString) - Len(fileNameRight) - 1)

 If (Dir$(fileName) = "") Then
 '** If the fileName wasn't found in the directory,

'** return the name we were given
 GetUniqueFileName = fileName
 Exit Function
 Else
 '** If the fileName was found, keep adding a number to

'** the end of the left part of the fileName until it's
'** unique. For example, autoexec.bat becomes autoexec(1).bat

 Do While True
 '** Generate a new fileName
 newfileName = dirName & slash & fileNameLeft & "(" & Trim(Str(count)) & ")."
& fileNameRight

 '** Check to see if the new name is a duplicate
 If (Dir$(newFileName) = "") Then
 Exit Do
 Else
 count = count + 1
 End If
 Loop

 GetUniqueFileName = newFileName
 Exit Function
 End If

processError:
 Dim errmess As String
 errmess = Error
 GetUniqueFileName = ""
 Exit Function

End Function

The process is: we make sure that the directory exists, then we see if the file name exists, and if it
does, we keep adding a number to the name until it's unique. There are plenty of variations on this
theme, too. You can adjust the function so that the file name is always in 8.3 format, or whatever
format you want.

Writing to a Text File
Before we get too much farther, we should also show you the basic technique for writing to a text
file. This is something you'll end up using for logging, creating HTML files, etc.

Script – Writing to a text file
 '** open a file for writing
 fileNum% = Freefile()
 fileName$ = "C:\SampleFile.txt"
 Open fileName$ For Output As fileNum%

 '** write some stuff
 Print #fileNum%, "Sample Text File Contents"
 Write #fileNum%, "One", "Two", "Three"

The [unfinished] LotusScript Book Page 130 of 156
 by Julian Robichaux

 '** close the file
 Close fileNum%

It's a fairly simple process: open a file for Output, use either the Print or the Write statement to write
text to it, and close it when you're done. It's very important to close the file when you're done; if you
don't, then the file can end up locked so that other processes (including Notes) can't open it until
you either shut down Notes or issue a Reset command in another script.

Writing and Running a Batch File
This example will show you the basic technique for writing and running a batch file, which is
essentially the same procedure you'll need to use for writing any text file.

Script – Write and run a batch file to delete TMP files
Function DeleteTempFiles () As Integer
 '** delete the *.TMP files in the Temp directory, using a batch file
 On Error Goto processError

 Dim tempDir As String
 Dim batFileName As String
 Dim batFileNum As Integer
 Dim taskId As Integer

 '** try to get the path to the Temp directory from the system
 '** environment variables
 tempDir = Environ$("TEMP")

 '** if we can't find the Temp directory, just exit
 If (tempDir = "") Then
 DeleteTempFiles = False
 Exit Function
 End If

 '** We can't send an internal DOS command (like DEL) directly using
 '** the Shell command, so we'll write a little batch file to take care

'** of it for us. Kind of a pain, but it's still better than using the
'** Kill command, which doesn't accept wildcards.

 batFileNum = Freefile()
 batFileName = TempDir & "\" & "DelTempFiles.bat"
 Open batFileName For Output As batFileNum
 Print #batFileNum, "REM - TMP File Delete Batch File, created " & Format(Now(), "m-d-
yy h:mm:ss")
 Print #batFileNum, ""
 Print #batFileNum, "DEL " & TempDir & "*.TMP /Q"
 Close batFileNum

 '** Run the batch file
 taskId = Shell(batFileName, 1)

 DeleteTempFiles = True
 Exit Function

processError:
 Dim errMsg As String
 errMsg = Error$
 Reset
 DeleteTempFiles = False
 Exit Function

The [unfinished] LotusScript Book Page 131 of 156
 by Julian Robichaux

End Function

This function gets the path of the Temp directory from the operating system environment variable
"TEMP", and it then writes a batch file to delete all the *.TMP files in that directory. In this case, a
batch file is a good way of performing this type of operation, because the Shell command doesn't
allow you to run DOS commands, and the LotusScript Kill function doesn't accept wildcards.

Notice how the error-handling routine includes a call to the Reset function. This is good practice for
a function that creates and closes a file, because if there's an error before the file has been closed,
then the file may be inaccessible because it is still being "held" by LotusScript.

Reading from a Text File
The technique for reading from a text file is very similar to writing to a file:

Script – Reading from a text file
 '** open the file for reading
 fileNum% = Freefile()
 fileName$ = "C:\SampleFile.txt"
 Open fileName$ For Input As fileNum%

 '** read some things from the file
 string1$ = Input$(30, #fileNum)
 Line Input #fileNum, string2$

 '** close the file
 Close fileNum%

It's the same kind of process: open a file for Input, use one of the techniques for reading from the
file, and close it.

If you're dealing with fairly small files (less than 10K), you can use the Line Input statement to read
one line at a time without too much of a performance hit. Otherwise, you'll generally want to read
large "chunks" of the file using the Input$ function and parse out the lines of the file on your own, if
necessary. This is because every time you use Line Input, you have to keep going back to the file
and read a small piece of it to a string, which takes processing time accessing the file repeatedly as
well as reinitializing the string every time you read something new.

Searching for Text in a File
Here's a good example of how to use the technique of reading large pieces of a text file instead of
using Line Input to access text in the file. It's a function that searches a file for a string and returns
an array containing all the positions in the file where that text was found.

Script – Searching for text in a file
Function SearchFile (fileName As String, Byval searchTerm As String, _
maxMatches As Integer) As Variant
 '** This function searches fileName for all occurences of searchTerm,

'** and returns the results as a list. For every match it finds, it
'** returns the position in the file where the search term was found,
'** along with the position of the last linefeed character before the
'** position, so you can easily return the entire line that the search
'** term was found in (if desired). The format is:
'** tempArray(i) = LinefeedPos;SearchPos

The [unfinished] LotusScript Book Page 132 of 156
 by Julian Robichaux

 '**
 '** If maxMatches is a number more than 0, only the first x matches

'** will be returned. This is useful if you're just determining whether
'** or not a file contains your searchtext, or if you're afraid that a
'** lot of matches might be found, and you want to keep processing

 '** time to a minimum.

 On Error Goto processError

 Dim fileNum As Integer
 Dim count As Integer
 Dim fileLength As Long
 Dim currentPos As Long
 Dim lastPos As Long
 Dim text As String
 Dim buffer As String
 Dim bufferLen As Integer
 Dim bufferChunk As String
 Dim bufferPos As Integer
 Dim lastCRPos As Integer
 Dim searchTermLen As Integer

 '** Exit if there is no search term
 If (Trim(searchTerm) = "") Then
 Redim Preserve tempArray(0) As String
 tempArray(0) = ""
 SearchFile = tempArray
 Exit Function
 Else
 searchTermLen = Len(searchTerm)
 searchTerm = Ucase(searchTerm)
 End If

 '** Start the timer
 Dim startTime As Single
 Dim elapsedTime As Single
 startTime! = Timer()
 '** Set maxTime as the maximum amount of time we'll search
 '** (in seconds) before exiting the function
 Dim maxTime As Integer
 maxTime = 20

 '** Get the file
 fileNum = Freefile()
 Open fileName For Input As fileNum

 '** Search the file
 count = 0
 fileLength = Lof(fileNum)

 Do While Not Eof(fileNum)
 '** Read the next 30,000 bytes into a string, plus the next

'** full line after that. It is MUCH faster to read the data
'** into a string and search it than it is to go through the
'** entire file line-by-line.

 currentPos = Seek(fileNum)
 lastPos = currentPos
 If (fileLength = currentPos) Then
 Exit Do
 Elseif ((fileLength - currentPos) > 30000) Then
 '** if we're more than 30000 bytes from the end of

'** the file, get the next 30000 bytes, up to the
'** next linefeed

The [unfinished] LotusScript Book Page 133 of 156
 by Julian Robichaux

 buffer = Input$(30000, #fileNum)
 Line Input #fileNum, text
 buffer = buffer & text
 Else
 '** if we're more than 30000 bytes from the end of

'** the file, get the rest of the file
 buffer = Input$(fileLength - currentPos + 1, #fileNum)
 End If

 bufferLen = Len(buffer)
 buffer = Ucase(buffer)

 '** Check for the search term in the buffer. If it's found, return
 '** its position in the file.

 '** If there are a large number of "hits" in a string, it's

'** actually more efficient to go through the string character
'** by character than it is to repeatedly call the Instr function

 bufferPos = 1
 lastCRPos = lastPos
 Do Until (bufferPos > bufferLen)
 bufferChunk = Mid$(buffer, bufferPos, searchTermLen)
 If (bufferChunk = searchTerm) Then
 '** If we found a match, add to the array
 If (count < maxMatches) Or (maxMatches < 1) Then
 Redim Preserve tempArray(count) As String
 tempArray(count) = Cstr(lastCRPos) & ";" & _

Cstr(bufferPos + lastPos - 1)
 Else
 Exit Do
 End If
 count = count + 1
 End If

 If (Asc(bufferChunk) = 10) Or (Asc(bufferChunk) = 13) Then
 lastCRPos = bufferPos + lastPos
 End If

 '** Exit if this is taking too long
 If ((Timer() - startTime!) > maxTime) Then
 Exit Do
 End If

 bufferPos = bufferPos + 1
 Loop '** end of buffer search loop

 '** Exit if there are more than maxMatch matches
 If (count >= maxMatches) And (maxMatches > 0) Then
 Exit Do
 End If

 '** Exit if this is taking too long
 If ((Timer() - startTime!) > maxTime) Then
 Redim Preserve tempArray(count) As String
 tempArray(count) = "Error: Search timed out at " & Trim(Cstr((Timer() -
startTime!))) & " seconds."
 Exit Do
 End If
 Loop '** EOF loop

 '** If no results were found, return nothing
 If (count = 0) Then
 Redim Preserve tempArray(0) As String

The [unfinished] LotusScript Book Page 134 of 156
 by Julian Robichaux

 tempArray(0) = ""
 End If

 Close fileNum
 SearchFile = tempArray
 Exit Function

processError:
 Dim errMess As String
 errMess = Error$

 Redim Preserve tempArray(count) As String
 tempArray(count) = "Error: " & errMess
 SearchFile = tempArray

 If (fileNum > 0) Then
 Close fileNum
 End If

 Exit Function

End Function

This function opens a file for Input, grabs 30,000 bytes of it at a time, and searches those 30,000
bytes for the search string. Every time it finds an instance of the search string, it adds its position to
an array, along with the position of the last linefeed in the 30,000 byte chunk (which is useful if you
want to retrieve the entire line that the search result is in). To watch it work, try copying the
function into an agent and typing the following into the Initialize section:

 fileName$ = "C:\Notes\Notes.ini" '** your Notes.ini file here

 searchResults = SearchFile(fileName$, "notes", 0)

 fileNum% = Freefile()
 Open fileName$ For Input As fileNum%
 Forall pos In searchResults
 Seek #fileNum%, Cint(Left$(pos, Instr(pos, ";") - 1))
 Line Input #fileNum%, text$
 Print text$
 End Forall

 Close #fileNum%

When you run the agent, it will print all the lines in your Notes.ini file that contain the word "notes"
to the message bar at the bottom of the Notes client window.

Some possible enhancements you could make to this function are giving the user the ability to
search for multiple terms, perform wildcard searches (see the wildcard search function in the
chapter on strings), or specify whether or not a search should be case-sensitive.

GetNextToken – an Alternative to Line Input
The "Line Input" function is pretty handy for getting the next line of text in a sequential file.
Unfortunately, sometimes you want very similar but just slightly different functionality. For
example, you might have a text file that has information that's delimited by something other than
carriage returns or linefeeds. Or you might have Chr(0) characters embedded in your text file –

The [unfinished] LotusScript Book Page 135 of 156
 by Julian Robichaux

which would be not only incorrectly interpreted as linefeeds, but the Line Input function will
actually skip the rest of the line (not sure if this is a bug or a feature).

The following function will simulate the Line Input function, but it allows you to specify what you
want your delimiter to be. If you want this to act just like Line Input, you can use Chr(13) &
Chr(10) as your delimiter.

Script – Get the next delimited string in a text file
Function GetNextToken (fileNum As Integer, delim As String, isEOF As Integer) As
String
 '** get the next "token" (string of text, delimited by delim)
 '** in a sequential file
 On Error Goto processError

 '** static variables used to maintain state
 Static buffer As String
 Static lastPos As Integer

 Dim dataLength As Integer
 Dim moreText As String
 Dim pos As Integer
 Dim result As String

 isEOF = False

 If (buffer = "") Then
 '** try to get more data from the file if our buffer is empty
 Select Case (Lof(fileNum) - Seek(fileNum))
 Case Is <= 0
 isEOF = True
 GetNextToken = ""
 Exit Function
 Case Is > 30000
 dataLength = 30000
 Case Else
 dataLength = Lof(fileNum) - Seek(fileNum)
 End Select

 buffer = Input$(dataLength, fileNum)
 End If

 '** get the next occurence of the delimiter, and make sure
 '** lastPos is valid
 If (lastPos < 1) Then
 lastPos = 1
 End If
 pos = Instr(lastPos, buffer, delim)

 If (pos > 0) Then
 '** if we found the delimiter, we can easily return the text
 '** between the previous delimiter and the one we just found
 result = Mid$(buffer, lastPos, pos - lastPos)
 lastPos = pos + Len(delim)
 If (lastPos >= Len(buffer)) Then
 lastPos = 0
 buffer = ""
 End If
 Else
 '** if we couldn't find the delimiter, we at least want everything
 '** up to the end of the string
 result = Mid$(buffer, lastPos)

The [unfinished] LotusScript Book Page 136 of 156
 by Julian Robichaux

 '** we can then reset the static variables and make a recursive
 '** call, which will get the first part of the next buffer, up to
 '** the delimiter (or nothing, if we're at the end of the file)
 lastPos = 0
 buffer = ""
 result = result & GetNextToken(fileNum, delim, isEOF)
 End If

 GetNextToken = result
 Exit Function

processError:
 '** the most common error will be an overflow (#228), which will
 '** happen if the delimiter hasn't been found for a large stretch
 '** of the file. You can deal with that as a special case if you want.
 '** Also, fileNum may be invalid.
 GetNextToken = result
 Exit Function

End Function

This function takes as input the file number of an open sequential file and the delimiter that you're
looking for, and it returns the isEOF variable (which indicates whether or not you've reached the
end of the file) and the delimited string. It uses static variables to maintain state, although you
should keep in mind that if another function uses the same file number to change the cursor position
in the file, your results could become skewed. You could use another static variable to make sure
your cursor position remains constant, if you're worried about that.

Also, this function makes a recursive call in order to get the end of the token string, because that's a
little easier than duplicating the file-reading logic again at the end of the function, or trying to build
a loop to return to the top of the function to read the next buffer. If you want to see more examples
of recursive functions in action, please see the chapter on Strings.

Creating a Listing of Notes ID Files in a Directory
Here's an example that puts together several of the concepts in this chapter. It will get all the *.ID
files in a given directory and output, to a comma-delimited file, information about the ID files it
finds.

Script – List information about Notes ID files in a given directory
Function ListIDFileInfo (idDir As String, outputFileName As String) As Integer
 '** go through all the ID files in a directory and output information
 '** about them in comma-delimited format to outputFileName
 On Error Goto processError

 Dim outputFileNum As Integer
 Dim fileOpened As Integer
 Dim idFileNum As Integer
 Dim idFileName As String
 Dim idFileNameWhole As String
 Dim searchResults As Variant
 Dim nameString As String
 Dim slash as String

 slash = GetFileSeparator()

 '** open the output file
 outputFileNum = Freefile()

The [unfinished] LotusScript Book Page 137 of 156
 by Julian Robichaux

 Open outputFileName For Output As outputFileNum
 fileOpened = True
 Print #outputFileNum, "ID File Information for " & idDir & "; created " &
Format(Now(), "m-d-yy h:mm:ss")
 Write #outputFileNum, "FILE NAME", "USER NAME", "FILE DATE"

 '** traverse the ID directory
 idFileName = Dir$(idDir & slash & "*.ID")
 Do Until (idFileName = "")
 idFileNameWhole = idDir & slash & idFileName
 '** find the user name in the file, with the user-defined
 '** function SearchFile
 searchResults = SearchFile(idFileNameWhole, "CN=", 2)

 '** get the name so we can use it
 idFileNum = Freefile()
 Open idFileNameWhole For Input As idFileNum
 Seek #idFileNum, Cint(Mid$(searchResults(1), Instr(searchResults(1), ";") + 1))
 nameString = Input$(100, #idFileNum)
 nameString = Trim$(Left$(nameString, Instr(nameString, Chr(0)) - 1))

 '** print ID file information to our output file
 Write #outputFileNum, idFileName, nameString, Filedatetime(idFileNameWhole)

 '** get the next ID file
 idFileName = Dir$()
 Loop

 Close #outputFileNum

 ListIDFileInfo = True
 Exit Function

processError:
 If fileOpened Then
 Print #outputFileNum, "Error: " & Error$
 End If
 Reset
 ListIDFileInfo = False
 Exit Function

End Function

The comments within the code should help you understand what's going on in the function. Notice
how all the calls to the Dir$ function after the first call don't include any arguments. That's because
the Dir$ function automatically remembers the last set of arguments you used, and it gets the next
file based on those arguments.

Binary File Manipulation: Getting Information about an MP3 File
Here's a fun example that will give you a little taste of reading binary files. It's a function that will
read information about all the MP3 files in a given directory and output the information into a
comma-delimited file.

Script – Getting information about MP3 files (binary read)
Function OutputMP3Info (mp3Dir As String, outputFileName As String) As Integer
 '** send information about MP3 files in a directory to a
 '** comma-delimited file
 On Error Goto processError

The [unfinished] LotusScript Book Page 138 of 156
 by Julian Robichaux

 Dim outputFileNum As Integer
 Dim fileOpened As Integer
 Dim mp3FileNum As Integer
 Dim mp3FileName As String
 Dim mp3FileNameWhole As String
 Dim tagInfo As String * 64
 Dim song As String, artist As String, album As String
 Dim songYear As String, comment As String, genre As Integer
 Dim slash as String

 slash = GetFileSeparator()

 '** open the output file
 outputFileNum = Freefile()
 Open outputFileName For Output As outputFileNum
 fileOpened = True
 Print #outputFileNum, "MP3 File Information for " & mp3Dir & "; created " &
Format(Now(), "m-d-yy h:mm:ss")
 Write #outputFileNum, "FILE NAME", "SONG NAME", "ARTIST", "ALBUM", "YEAR", "COMMENT",
"GENRE NUMBER"

 '** traverse the MP3 directory
 mp3FileName = Dir$(mp3Dir & slash & "*.MP3")
 Do Until (mp3FileName = "")
 mp3FileNameWhole = mp3Dir & slash & mp3FileName

 '** open the MP3 file so we can get the tag information, which is
 '** the last 128 bytes of the file
 mp3FileNum = Freefile()
 Open mp3FileNameWhole For Binary Access Read Shared As #mp3FileNum

 Seek #mp3FileNum, Filelen(mp3FileNameWhole) - 127
 Get #mp3FileNum, , tagInfo

 '** translate the tagInfo to a LotusScript string, so we can

'** get the substrings
 tagInfoString = ConvertBinaryText(tagInfo, " ")

 song = Trim$(Mid$(tagInfoString, 4, 30))
 artist = Trim$(Mid$(tagInfoString, 34, 30))
 album = Trim$(Mid$(tagInfoString, 64, 30))
 songYear = Trim$(Mid$(tagInfoString, 94, 4))
 comment = Trim$(Mid$(tagInfoString, 98, 30))

genre = Asc(Mid$(tagInfoString, 128, 1))

 Close #mp3FileNum

 '** print MP3 file information to our output file
 Write #outputFileNum, mp3FileName, song, artist, album, songYear, comment, genre

 '** get the next file
 mp3FileName = Dir$()
 Loop

 Close #outputFileNum

 OutputMP3Info = True
 Exit Function

processError:
 If fileOpened Then
 Print #outputFileNum, "Error: " & Error$
 End If

The [unfinished] LotusScript Book Page 139 of 156
 by Julian Robichaux

 Reset
 OutputMP3Info = False
 Exit Function

End Function

Because we're reading the MP3 files in Binary mode, we'll also need this helper function to read the
tag information as a string:

Script – Translate binary string information to LotusScript format
Function ConvertBinaryText (binString As String, convertChrZero As String) As String
 Dim newLen As Long
 Dim returnString As String
 Dim i As Integer
 Dim nextChar As String

 newLen = Len(binString) * 2
 returnString = Space$(newLen)
 returnString = ""

 For i = 1 To newLen
 newChar = Midb$(binString, i, 1)
 If (newChar = Chr(0)) Then
 returnString = convertChrZero
 Else
 returnString = returnString & nextChar
 End If
 Next

 ConvertBinaryText = returnString

End Function

The reason why we have to "translate" the tag data is because a string character in LotusScript is 2
bytes long, while non-Unicode characters in the binary file are all one byte long. The translation
routine simply takes the string of characters in the single byte representation and changes it to the
double-byte representation that we're used to. This is also why we defined the tagInfo variable as a
string of length 64, despite the fact that we're reading in 128 characters. Please see the String
chapter for more information about string representations.

Of course, if we know that the information we want from the file is all string-based, we can also opt
to read the file as a sequential file instead of a binary one – even though it really is a binary file. By
doing this, LotusScript will automatically do the string conversions for us.

Script – Getting information about MP3 files (sequential read)
Function OutputMP3Info2 (mp3Dir As String, outputFileName As String) As Integer
 '** send information about MP3 files in a directory to a
 '** comma-delimited file
 On Error Goto processError

 Dim outputFileNum As Integer
 Dim fileOpened As Integer
 Dim mp3FileNum As Integer
 Dim mp3FileName As String
 Dim mp3FileNameWhole As String
 Dim tagInfo As String
 Dim tagInfoString As String * 128
 Dim song As String, artist As String, album As String

The [unfinished] LotusScript Book Page 140 of 156
 by Julian Robichaux

 Dim songYear As String, comment As String, genre As Integer

 '** open the output file
 outputFileNum = Freefile()
 Open outputFileName For Output As outputFileNum
 fileOpened = True
 Print #outputFileNum, "MP3 File Information for " & mp3Dir & "; created " &
Format(Now(), "m-d-yy h:mm:ss")
 Write #outputFileNum, "FILE NAME", "SONG NAME", "ARTIST", "ALBUM", "YEAR", "COMMENT",
"GENRE NUMBER"

 '** traverse the MP3 directory
 mp3FileName = Dir$(mp3Dir & "*.MP3")
 Do Until (mp3FileName = "")
 mp3FileNameWhole = mp3Dir & "\" & mp3FileName

 '** open the MP3 file so we can get the tag information, which is
 '** the last 128 bytes of the file
 mp3FileNum = Freefile()
 Open mp3FileNameWhole For Input Access Read Shared As #mp3FileNum

 Seek #mp3FileNum, Filelen(mp3FileNameWhole) - 127
 tagInfoString = Input$(128, #mp3FileNum)

 song = Char0Trim(Mid$(tagInfoString, 4, 30))
 artist = Char0Trim(Mid$(tagInfoString, 34, 30))
 album = Char0Trim(Mid$(tagInfoString, 64, 30))
 songYear = Char0Trim(Mid$(tagInfoString, 94, 4))
 comment = Char0Trim(Mid$(tagInfoString, 98, 30))
 genre = Asc(Mid$(tagInfoString, 128, 1))

 Close #mp3FileNum

 '** print MP3 file information to our output file
 Write #outputFileNum, mp3FileName, song, artist, album, songYear, comment, genre

 '** get the next file
 mp3FileName = Dir$()
 Loop

 Close #outputFileNum

 OutputMP3Info2 = True
 Exit Function

processError:
 If fileOpened Then
 Print #outputFileNum, "Error: " & Error$
 End If
 Reset
 OutputMP3Info2 = False
 Exit Function

End Function

This also has a helper function, which trims off the Chr(0) characters from the end of the substrings:

Script – Trim the Chr(0) characters from a string
Function Char0Trim (theString As String) As String
 '** get everything to the left of the first Chr(0) in the string
 Dim pos As Integer
 pos = Instr(theString, Chr(0))

The [unfinished] LotusScript Book Page 141 of 156
 by Julian Robichaux

 If (pos > 0) Then
 Char0Trim = Trim$(Left$(theString, pos - 1))
 Else
 Char0Trim = Trim$(theString)
 End If

End Function

The trick with reading binary files is having knowledge about the format of the information in the
file. Unlike a structured text file, which is generally easy to translate just by looking at the text in
the file, the structure of data within a binary file is usually pretty cryptic.

For more information about the structure of MP3 files, a good reference is the Programming section
of http://www.mp3-tech.org .

Searching for Files or Directories
This function will allow you to search for a file or directory recursively, so that the search includes
subdirectories. You can use any wildcards supported by the Dir function.

Script – Searching for Files or Directories
Function FindFiles (Byval startPath As String, searchString As String,
includeDirectories As Integer) As String
 '** recursively find files, searching all subdirectories, and return
 '** all file names in a semi-colon-delimited string
 On Error Goto processError

 Dim tempString As String
 Dim resultString As String
 Dim fileName As String
 Dim dirName As String
 Dim dirNameList List As String
 Dim slash as String

 slash = GetFileSeparator()

 If (Right$(startPath, 1) = slash) Then
 startPath = Left$(startPath, Len(startPath) - 1)
 End If

 '** get all the matching files in this directory
 fileName = Dir$(startPath & slash & searchString, 0+2+4+16)
 Do Until (fileName = "")
 If (Getfileattr(startPath & slash & fileName) And 16) Then
 '** if we got a subdirectory that matched, only include it
 '** in the list if includeDirectories = True
 If (includeDirectories = True) Then
 tempString = tempString & ";" & startPath & slash & fileName & "[DIR]"
 End If
 Else
 '** otherwise, it's a file, and should be added to the list
 tempString = tempString & ";" & startPath & slash & fileName
 End If

 fileName = Dir$()
 Loop

 '** now get all the subdirectories under startPath, so we can
 '** check them too

http://www.mp3-tech.org

The [unfinished] LotusScript Book Page 142 of 156
 by Julian Robichaux

 dirName = Dir$(startPath & slash & "*.*", 16)
 Do Until (dirName = "")
 If (Getfileattr(startPath & slash & dirName) And 16) And (dirName <> "..") And
(dirName <> ".") Then
 dirNameList(dirName) = startPath & slash & dirName
 End If
 dirName = Dir$()
 Loop

 '** now recursively search all the subdirectories
 Forall subdir In dirNameList
 resultString = FindFiles(subdir, searchString, includeDirectories)
 If Not (resultString = "") Then
 tempString = tempString & ";" & resultString
 End If
 End Forall

 If (Left$(tempString, 1) = ";") Then
 tempString = Mid$(tempString, 2)
 End If

 Erase dirNameList
 FindFiles = tempString
 Exit Function

processError:
 FindFiles = Error$
 Erase dirNameList
 Exit Function

End Function

This function uses recursion to search through subdirectories. You can use a script like the
following to see what it does:

 Dim result$, lastPos%, pos%
 result$ = FindFiles("C:\", "notes*.*", True)

 lastPos% = 1
 pos% = Instr(lastPos, result$, ";")
 Do Until (pos = 0)
 Print Mid$(result$, lastPos, pos - lastPos)
 lastPos = pos + 1
 pos = Instr(lastPos, result$, ";")
 Loop

One interesting point: the reason why you need to create a list of the subdirectories before you
search through them is because of the way the Dir function works. When you call the Dir function
with no arguments, it simply looks for the next file, based on the last filespec you gave to it.
However, if you're looping through a directory using Dir and then you call another function that
also calls Dir, then the next time you call Dir in the original function, it will use the filespec from
the second function, because that was the last one it used. So in this function we get all the
subdirectory names before we recurse, to make sure that doesn't happen.

LotusScript Version of the DOS Deltree Command
Here's a variation on some of the previous scripts: a LotusScript implementation of the Deltree
command in DOS, which deletes a directory plus all files and subdirectories under it. LotusScript

The [unfinished] LotusScript Book Page 143 of 156
 by Julian Robichaux

has a built-in RmDir function that will delete directories, but it will only delete empty ones. This
function takes care of that.

Script – LotusScript version of Deltree
Function Deltree (Byval dirName As String, shouldDeleteDir As Integer) As Integer
 '** LotusScript version of the Deltree DOS command. The User optionally
 '** has the ability to specify whether the base directory should be

'** deleted (when shouldDeleteDir is True), or if we just want to clean
'** out all the files and subdirectories in it (False).

 On Error Goto processError

 Dim dirNameList List As String
 Dim fileName As String
 Dim fullFileName As String

 '** trim off any trailing "\" on the directory name
 Do While (Right$(dirName, 1) = "\")
 dirName = Left$(dirName, Len(dirName) - 1)
 Loop

 '** exit early if there is no directory of this name
 If (Dir$(dirName, 16) = "") Then
 Deltree = False
 Exit Function
 End If

 '** first, delete all the files in this directory
 fileName = Dir$(dirName & "*.*", 2+4+16)
 Do Until (fileName = "")
 fullFileName = dirName & "\" & fileName

 If (Getfileattr(fullFileName) And 16) Then
 '** it's a directory, so add it to the dirNameList,
 '** unless it's one of the "." or ".." directories
 If (fileName <> ".") And (fileName <> "..") Then
 dirNameList(fileName) = fullFileName
 End If
 Else
 '** it's a file, so delete it
 '** (4.6 doesn't like to delete Read-Only files, so...)
 Setfileattr fullFileName, 0
 Kill fullFileName
 End If

 fileName = Dir$
 Loop

 '** due to a limitation in some versions of 4.6, we also need to
 '** look for subdirectories like this in a separate loop.
 '** Be aware that some versions of 4.6 can never see Hidden
 '** directories with the Dir function.
 fileName = Dir$(dirName & "*.*", 16)
 Do Until (fileName = "")
 fullFileName = dirName & "\" & fileName

 If (Getfileattr(fullFileName) And 16) Then
 '** it's a directory, so add it to the dirNameList,
 '** unless it's one of the "." or ".." directories
 If (fileName <> ".") And (fileName <> "..") Then
 dirNameList(fileName) = fullFileName
 End If
 End If

The [unfinished] LotusScript Book Page 144 of 156
 by Julian Robichaux

 fileName = Dir$
 Loop

 '** do this recursively for all the subdirectories
 Forall subDir In dirNameList
 Call Deltree(subDir, True)
 End Forall

 '** delete the main directory itself, if we're supposed to
 If shouldDeleteDir Then
 Rmdir dirName
 End If

 Erase dirNameList
 Exit Function

processError:
 '** if we got an error, we probably didn't have rights to delete
 '** a file, or it was in use or something, but go ahead and try
 '** to clean out the rest of the directory
 Dim errMsg As String
 errMsg = "Error " & Err & ": " & Error$
 Deltree = False
 Resume Next

End Function

The inline comments in the code have some information about how some of the functions in Notes
4.6 are a little quirky. Otherwise, this script should be pretty easy to follow: get all the files in the
directory and delete them one by one, and then do the same for any subdirectories by making a
recursive call.

The one little addition to this function is the shouldDeleteDir option, which is a Boolean value that
allows you to specify whether you want to do a full Deltree, or if you just want to clear out the
directory you specified. You could easily modify this function so that it only deletes certain files
and directories in a directory tree, based on a given search string (like MS*.DLL or something), or
it deletes files but not directories, or whatever else might be useful to you.

The [unfinished] LotusScript Book Page 145 of 156
 by Julian Robichaux

Miscellaneous Code
The code in this chapter is a collection of functions and routines that didn’t seem to fit anywhere
else in the book, but that might be useful in general. Information is presented in no particular order

Running an Agent on the Last Day of the Month
Using the agent scheduling features in Notes (up to at least R5), you can't write an agent that runs
on the last day of the month. The monthly scheduling option only allows you to enter a number in
the day-of-month field, but not all months have the same amount of days, so if you schedule an
agent for day 28, it won't really run on the last day of most months, and if you schedule it for day
31, then it won't run at all on some months.

One answer is to run the agent daily, and add this little bit of script to the beginning of the Initialize
sub:

 Dim tomorrow As New NotesDateTime(Today)
 tomorrow.AdjustDay(1)
 If (Month(tomorrow.LSLocalTime) = Month(Today)) Then
 '** if tomorrow is the same month as today, we're
 '** not on the last day of the month
 Exit Sub
 End If

The script merely checks to see if tomorrow's date is the same month as today's date (if it's the end
of the month, tomorrow will be a different month), and if it is, it immediately exits the script. This
way, the agent will start to run every day, but it will exit early if it's not the end of the month.

Get Server Time
Here’s an easy way to get the time on the server that a database is on (you have to have at least
Author rights to the database that you put this code in).

 Dim session As New NotesSession
 Dim db As NotesDatabase
 Dim ServerName As NotesName
 Dim doc As NotesDocument

 Set db = session.CurrentDatabase
 Set ServerName = New NotesName(db.Server)
 Set doc = db.CreateDocument

 Messagebox "The current time on " & ServerName.Common & " is " & Cstr(doc.Created) &
Chr(10) & _
 "The time on this workstation is " & Cstr(Now), 0, "Time"

Run Agent on Server
This is an agent that allows you to run other agents on the server.

 Dim session As New NotesSession
 Dim db As NotesDatabase
 Set db = session.CurrentDatabase

 '** get a list of all the agents in this database
 i% = 0

The [unfinished] LotusScript Book Page 146 of 156
 by Julian Robichaux

 Forall ag In db.Agents
 Redim Preserve agentArray(i%) As String
 agentArray(i%) = ag.Name
 i% = i% + 1
 End Forall

 '** sort the list of agents to make it easier to find things
 '** (this is a fairly slow sort, but it'll do for small arrays;
 '** it'll probably take much more time to get the list of agents
 '** than it will to sort them)
 For j% = 0 To (i% - 2)
 For k% = (j% + 1) To (i% - 1)
 If (agentArray(k%) < agentArray(j%)) Then
 swap$ = agentArray(j%)
 agentArray(j%) = agentArray(k%)
 agentArray(k%) = swap$
 End If
 Next
 Next

 '** ask the user which agent to run
 sVariant = ws.Prompt(PROMPT_OKCANCELLIST, "Choose An Agent", _
 "Which agent would you like to run?", "", agentArray)

 '** exit if the user hits cancel or doesn't choose anything
 If (Cstr(sVariant) = "") Then
 Exit Sub
 Else
 agentName$ = Cstr(sVariant)
 End If

 '** make sure the user really wants to do this
 prompt$ = "Are you sure you want to run """ & agentName$ & """ on the server?"
 shouldContinue% = Messagebox(prompt$, 4+32, "Continue?")
 If (shouldContinue% = 7) Then
 Exit Sub
 End If

 '** run this agent on the server
 Print "Attempting to run agent. This may take a while, depending on the agent."
 Set agent = db.GetAgent(agentName$)
 res% = agent.RunOnServer

 If (res% = 0) Then
 Messagebox """" & agentName$ & """ ran successfully.", 0, "Success"
 Else
 Messagebox """" & agentName$ & """ did not run successfully.", 0+48, "Failure"
 End If

Toggle Scheduled Agent Status
This is an agent that allows you to toggle the status of a scheduled agent in a database, without
having to go to the agent list in Designer.

 Dim session As New NotesSession
 Dim db As NotesDatabase
 Dim agent As NotesAgent
 Set db = session.CurrentDatabase

 '** get a list of all the scheduled agents in this database
 Redim agentArray(0) As String

The [unfinished] LotusScript Book Page 147 of 156
 by Julian Robichaux

 i% = 0
 Forall ag In db.Agents
 If (ag.Trigger = 1) Then
 '** this is a scheduled agent; add it to the list
 Redim Preserve agentArray(i%) As String
 agentArray(i%) = ag.Name
 i% = i% + 1
 End If
 End Forall

 '** sort the list of agents to make it easier to find things
 '** (this is a fairly slow sort, but it'll do for small arrays;
 '** it'll probably take much more time to get the list of agents
 '** than it will to sort them)
 For j% = 0 To (i% - 2)
 For k% = (j% + 1) To (i% - 1)
 If (agentArray(k%) < agentArray(j%)) Then
 swap$ = agentArray(j%)
 agentArray(j%) = agentArray(k%)
 agentArray(k%) = swap$
 End If
 Next
 Next

 '** present a list of the scheduled agents, and let the user pick one
 Dim ws As New NotesUIWorkspace
 sVariant = ws.Prompt(PROMPT_OKCANCELLIST, "Choose An Agent", _
 "Please choose an agent to enable/disable from the list below:", "", agentArray)

 '** exit if the user hits cancel or doesn't choose anything
 If (Cstr(sVariant) = "") Then
 Exit Sub
 Else
 agentName$ = Cstr(sVariant)
 End If

 '** get the status of the agent the user picked, and ask if they
 '** really want to do this
 Set agent = db.GetAgent(agentName$)
 If (agent.IsEnabled) Then
 agentStatus$ = "Enabled"
 agentNewStatus$ = "Disabled"
 Else
 agentStatus$ = "Disabled"
 agentNewStatus$ = "Enabled"
 End If

 prompt$ = "The scheduled agent " & agentName$ & " is currently " & _
 agentStatus$ & ". Would you like to toggle the status of this agent?"
 shouldContinue% = Messagebox(prompt$, 4+32, "Continue?")
 If (shouldContinue% = 7) Then
 Exit Sub
 End If

 '** If we're here, toggle the agent status
 agent.IsEnabled = Not agent.IsEnabled
 Call agent.Save

 Messagebox "Done. The Agent " & agentName$ & " is now " & agentNewStatus$, 0,
"Success"

The [unfinished] LotusScript Book Page 148 of 156
 by Julian Robichaux

Get User Groups
This is an example of a recursive function that gets all the groups that a user is in, including nested
groups. I’ve included an example Initialize sub from an agent to demonstrate the use.

Sub Initialize
 '** Determine the groups that the current user is in, including
 '** all nested groups
 On Error Goto processError

 Dim session As New NotesSession
 Dim db As NotesDatabase
 Dim view As NotesView
 Dim serverName As String
 Dim userName As String
 Dim groupList As Variant

 serverName = "MyNABServer"
 userName = session.UserName

 Set db = session.GetDatabase(serverName, "names.nsf")
 Set view = db.GetView("Groups")

 '** create a text file for output
 fileNum% = Freefile()
 fileName$ = "C:\UserGroupInfo.txt"
 Open fileName$ For Output As fileNum%
 Print #fileNum%, "User Group Info for " & userName & " on " & serverName
 Print #fileNum%, ""

 '** get the group information
 Call GetGroups(userName, view, "", 0, fileNum%)

 '** close the file and exit
 Close fileNum%

 Exit Sub

processError:
 Messagebox "Error " & Cstr(Err) & ": " & Error$
 Reset
 Exit Sub

End Sub

Function GetGroups (lookupName As String, groupView As NotesView, alreadyUsed As
String, _
indentLevel As Integer, fileNum As Integer)
 '** This sub will recursively iterate through all the groups in the NAB,
 '** figuring out which ones the given user or group is in.
 On Error Goto processError

 Dim doc As NotesDocument
 Dim memberItem As NotesItem
 Dim groupName As String
 Dim tabString As String

 '** use tabString to indent the entry, indicating that a group is a
 '** member of the group below it
 For i% = 1 To indentLevel
 tabString = tabString & Chr(9)
 Next

The [unfinished] LotusScript Book Page 149 of 156
 by Julian Robichaux

 '** step through the group documents in the NAB that we're looking at
 Set doc = groupView.GetFirstDocument

 Do While Not (doc Is Nothing)
 Set memberItem = doc.GetFirstItem("Members")
 groupName = doc.ListName(0)

 '** Check for direct inclusion in a group. If the lookup name is
 '** in the Members text list and we haven't already used the group
 '** (if we did, it will be in the alreadyUsed string, and would
 '** represent a circular reference), output the group name to our
 '** file and recurse
 If (memberItem.Contains(lookupName)) And (Instr(1, alreadyUsed, "~" & groupName
& "~", 5) < 1) Then
 Print #fileNum%, tabString & groupName
 '** recursion will find other groups that this group is
 '** a member of
 Call GetGroups(groupName, groupView, alreadyUsed & "~" & groupName & "~",
indentLevel + 1, fileNum)
 End If

 Set doc = groupView.GetNextDocument(doc)
 Loop

 Exit Function

processError:
 Print #fileNum%, "Error " & Cstr(Err) & ": " & Error$
 Exit Function

End Function

Get Database Sizes (even if you don't have access to the databases)
This script lists the sizes of all the databases on a given server, even if you don’t have access to the
databases themselves. It’s handy for com paring mail file sizes on a mail server.

 Dim dbdir As New NotesDbDirectory("MyMailServer")
 Dim db As NotesDatabase

 '** create a text file for output
 fileNum% = Freefile()
 fileName$ = "C:\MailDatabases.csv"
 Open fileName$ For Output As fileNum%

 Set db = dbdir.GetFirstDatabase(DATABASE)
 While Not(db Is Nothing)
 Print #fileNum%, db.Title & "," & db.FilePath & "," & db.Size
 Set db = dbdir.GetNextDatabase
 Wend

 Close fileNum%

The [unfinished] LotusScript Book Page 150 of 156
 by Julian Robichaux

Largest Subset of Two Strings
This is just a little something I was playing around with for a while. I read about how biological
researchers often had to find the largest subset of a string between multiple strings, in order to make
genetic comparisons. The trick was, it was the largest subset of characters that proceeded each
other, but weren’t necessarily next to each other. For example, in the two strings “dogdog” and
“digdig”, the largest subset between these two strings would be “dgdg”.

Anyway, I thought this would be an interesting code project, so here’s how I look ed at the problem.
I have no idea if this is an efficient implementation, or even an entirely correct one.

'** global variables
Dim matchList List As String
Dim matchListArray List As Variant
Dim matchListCount As Integer
Const MAX_LIST_SIZE = 10000

Function MatchTwoString (string1 As String, string2 As String, resetList As Integer)
As String
 '** find the first best possible match of sequential characters in two
 '** strings ("first" means that there may be multiple matches that are
 '** the same length, but we just want the first of those matches)
 Dim char1 As String, char2 As String
 Dim pos1 As Integer, pos2 As Integer
 Dim usedLetter1 As String, usedLetter2 As String
 Dim i As Integer, j As Integer
 Dim lastMatch As String, testMatch As String

 '** reset our global variables, if necessary. We use these to
 '** determine if we've already calculated this match before.
 If resetList Then
 Erase matchList
 matchListCount = 0
 End If

 '** optimization: exit early if we've already done this evaluation
 If Iselement(matchList(string1 & "~" & string2)) Then
 MatchTwoString = matchList(string1 & "~" & string2)
 Exit Function
 End If

 '** optimization: exit early if every single letter in the shorter
 '** or the strings has a match in the longer of the two
 Dim shortString As String
 Dim longString As String
 If (Len(string1) <= Len(string2)) Then
 shortString = string1
 longString = string2
 Else
 shortString = string2
 longString = string1
 End If

 For i = 1 To Len(shortString)
 If (pos1 = Len(longString)) Then
 pos1 = 0
 Exit For
 End If

 pos1 = Instr(pos1 + 1, longString, Mid$(shortString, i, 1))

The [unfinished] LotusScript Book Page 151 of 156
 by Julian Robichaux

 If (pos1 = 0) Then
 Exit For
 End If
 Next

 '** if we never reset pos1 back to zero, then all the characters
 '** in string1 were a match, and our match is string1. Also, since
 '** this is a pretty quick matching technique, don't bother adding
 '** the result to the list, because that will waste memory.
 If (pos1 > 0) Then
 MatchTwoString = shortString
 'Exit Function
 Goto endOfFunction
 End If

 '** if we got here, we should start checking for matches
 '** (NOTE: you can also substitute shortString for string1
 '** and longString for string2 here, but you then lessen your
 '** chances for running into a match you've already checked
 '** for before as you recurse the function)
 For i = 1 To Len(string1)
 char1 = Mid$(string1, i, 1)
 If (Instr(usedLetter1, char1) = 0) Then
 '** for every character we haven't tried before, look for a
 '** string match
 usedLetter1 = usedLetter1 & char1
 pos1 = Instr(string2, char1)

 If (pos1 > 0) Then
 '** try to find a match for the next character after
 '** this one
 If (Len(lastMatch) = 0) Then
 lastMatch = char1
 End If

 If (i = Len(string1)) Then
 Exit For
 End If

 usedLetter2 = ""
 For j = i + 1 To Len(string1)
 char2 = Mid$(string1, j, 1)
 If (Instr(usedLetter2, char2) = 0) Then
 '** if we haven't tried looking for
 '** this character combination
 '** yet, see what we find
 usedLetter2 = usedLetter2 & char2
 pos2 = Instr(pos1 + 1, string2, char2)
 If (pos2 > 0) Then
 testMatch = char1 & char2
 If (j < Len(string1)) And (pos2 < Len(string2)) Then
 testMatch = testMatch & MatchTwoString(Mid$(string1, j +
1), Mid$(string2, pos2 + 1), False)
 End If

 If (Len(testMatch) > Len(lastMatch)) Then
 lastMatch = testMatch
 End If
 End If
 End If

 Next

The [unfinished] LotusScript Book Page 152 of 156
 by Julian Robichaux

 End If
 End If

 Next

 MatchTwoString = lastMatch

endOfFunction:
 '** add to our global match list, if there isn't too much data
 '** in there already
 If (matchListCount < MAX_LIST_SIZE) Then
 matchList(string1 & "~" & string2) = MatchTwoString
 matchListCount = matchListCount + 1
 End If

End Function

Export View to CSV
This is a generic routine that will export the current view in comma-delimited format.

 Dim ws As New NotesUIWorkspace
 Dim uiview As NotesUIView
 Dim view As NotesView
 Dim doc As NotesDocument

 Set uiview = ws.currentview
 Set view = uiview.view

 Dim columnList List As Integer
 Dim colcount As Integer
 Forall column In view.Columns
 If (column.IsHidden = False) And (column.IsIcon = False) Then
 columnList(colcount) = colcount
 End If
 colcount = colcount + 1
 End Forall

 Dim fileNum As Integer
 Dim fileName As String
 fileNum = Freefile()
 fileName = Strrightback(view.Name, "\")
 If (fileName = "") Then
 fileName = view.Name
 End If
 fileName = fileName & ".csv"

 Dim var As Variant
 var = ws.SaveFileDialog(False, "File List", "Comma-Delimited Files|*.csv", "c:",
fileName)
 If (var(0) = "") Then
 Exit Sub
 Else
 fileName = var(0)
 End If

 Open fileName For Output As fileNum

 Dim printString As String
 Dim i As Integer

The [unfinished] LotusScript Book Page 153 of 156
 by Julian Robichaux

 Set doc = view.GetFirstDocument
 Do Until (doc Is Nothing)
 printString = ""
 Forall c In columnList
 If Isscalar(doc.ColumnValues(c)) Then
 printString = printString & """" & ReplaceSubstring(doc.ColumnValues(c),
"""", """""") & ""","
 Else
 printString = printString & """"
 var = doc.ColumnValues(c)
 For i = Lbound(var) To Ubound(var)
 printString = printString & ReplaceSubstring(var(i), """", """""") &
","
 Next
 printString = printString & ""","
 End If
 End Forall
 Print #fileNum, printString
 Set doc = view.GetNextDocument(doc)
 Loop

 Close fileNum
 Print "Finished exporting view to " & fileName

Add Admin to ACLs
This is an agent that will add an “Admin” group as a Manager to the ACL of the specified
databases. Normally, you’d want to run thi s as a scheduled agent on the server.

Sub Initialize
 '** This agent will add the ADMIN group to the ACL in all mail databases.
 '** Make sure you run it on the server, while logged in as the server
 On Error Goto processError

 Dim dbACL As NotesACL
 Dim dbACLEntry As NotesACLEntry
 Dim dbdir As New NotesDbDirectory("")
 Dim db As NotesDatabase
 Dim group As String
 Set db = dbdir.GetFirstDatabase(DATABASE)
 group = "Admin"

 Do While Not (db Is Nothing)
 '** if we're in the "mail" directory, check the database
 If (Ucase(Left$(db.FilePath, 4)) = "MAIL") Then
 Print "Checking " & db.FileName

 '** open the database so we can get its elements
 Call db.Open("", "")

 Set dbACL = db.ACL
 Set dbACLEntry = dbACL.GetFirstEntry()
 found% = False

 Do While Not(dbACLEntry Is Nothing)
 '** get the name of this ACL entry
 Set theName = New NotesName(dbACLEntry.Name)
 If (theName.IsHierarchical) Then
 EntryName$ = theName.Common
 Else
 EntryName$ = dbACLEntry.Name

The [unfinished] LotusScript Book Page 154 of 156
 by Julian Robichaux

 End If

 '** if this entry is "ADMIN", check the access and modify if necessary
 If (Ucase(EntryName$) = Ucase(group)) Then
 found% = True

 If Not (dbACLEntry.Level = ACLLEVEL_MANAGER) Then
 Print "Updating " & group & " access on " & db.FileName
 Call db.GrantAccess(dbACLEntry.Name, ACLLEVEL_MANAGER)
 End If

 Exit Do
 End If

 '** next entry
 Set dbACLEntry = dbACL.GetNextEntry(dbACLEntry)
 Loop

 '** if ADMIN was not included in this ACL, add it
 If Not found% Then
 Print "Adding " & group & " access on " & db.FileName
 Set dbACLEntry = dbACL.CreateACLEntry (group, ACLLEVEL_MANAGER)
 End If

 '** save the changes
 Call dbACL.Save

 End If

 Set db = dbdir.GetNextDatabase
 Loop

 Print "Finished."
 Exit Sub

processError:
 Print "Error " & Cstr(Err()) & ": " & Error$
 Messagebox "Error " & Cstr(Err()) & ": " & Error$, 0+48, "Error"
 Exit Sub

End Sub

Zip Web Server Logs
This agent will zip all the web server logs for the previous day into a zip file. All the logs for a
given month are stored in the same file. You would normally schedule this to run sometime early in
the morning, after midnight.

Sub Initialize
 On Error Goto processError
 Dim section As String

'** Get the location of the web server logs, and use that as our working.
'** directory. So we don't have to hard-code anything, we can look the

 '** directory up in the Server document for this server.
 section = "Get the log directory"
 Dim logdir As String

' logdir = "d:\notes\data\domino\logs"

The [unfinished] LotusScript Book Page 155 of 156
 by Julian Robichaux

 Dim session As New NotesSession
 Dim db As NotesDatabase
 Dim view As NotesView
 Dim doc As NotesDocument

 Set db = session.GetDatabase("", "names.nsf")
 Set view = db.GetView("($ServersLookup)")
 Set doc = view.GetDocumentByKey(db.Server, True)

 If (doc Is Nothing) Then
 Print db.Server & " server document not found in names.nsf. Zip Web Logs agent
could not run."
 Exit Sub
 Else
 logdir = doc.HTTP_LogDirectory(0)
 End If

 '** If no log directory is specified, the Notes data directory is the default
 If (logdir = "") Then
 logdir = session.GetEnvironmentString("Directory", True)
 End If

 Chdir logdir

'** This is the name and path of the ZIP executable that we'll be using.
'** In this case, it’s the program zip.exe from http://www.info-zip.org
'** This is a nice program because it's free, and it's been ported to all
'** sorts of different platforms.

 Dim zipExe As String
 zipExe = logdir & "\" & "zip.exe "

'** Figure out today's date as a string in the format MonthDayYear (like

 '** 11062000). The log files are named xxx-logMMDDYYY.log, so we'll want to
 '** know what today's date string is so we don't archive today's files.
 '** NOTE: the naming convention varies from one version of Notes to the next,
 '** and is dependent on other settings in the logging section of the Server
 '** document. Find out what the server's doing, and adjust as necessary.
 section = "Get today's date"
 Dim todayString As String
 todayString = Format$(Today, "mmddyyyy")

'** Create a batch file that will do all of the archiving for us. This is
'** because you can't wait for a Shell statement to end before continuing with
'** LotusScript statements, so if you try to Shell out all the commands for
'** zipping and deleting, you'll run into file contention problems.

 section = "Create Batch File"
 batFileNum% = Freefile()
 batFileName$ = logdir & "\" & "LogArc.bat"
 Open batFileName$ For Output As batFileNum%
 Print #batFileNum%, "REM - Web Log Archive Batch File, created " & Format(Now(), "m-
d-yy h:mm:ss")
 Print #batFileNum%, ""

'** Get the web log directory and start going through all the files

 section = "Step through the log directory"
 Dim zipName As String
 Dim fileName As String
 fileName = Dir$(logdir & "*.*", 0)

 Do While Not (fileName = "")

'** Essentially, the logic that we're applying is:
'** 1. Check the file name for the presence of today's MMDDYYY date
'** string. Skip if it's the same as today's date.

http://www.info

The [unfinished] LotusScript Book Page 156 of 156
 by Julian Robichaux

'** 2. Make sure the format of the file name is xxx-logMMDDYYYY.log. Our
'** quick check will be to see if the file contains the string
'** "-log", which should be enough for the files in this directory.
'** 3. If it's something that we want to archive, add it to a ZIP file
'** with an appropriate name (MthYear.zip)

'** If the filename is an acceptable format, archive the file

 section = "Check log file name"
 If (Instr(fileName, "-log") > 0) And (Instr(fileName, todayString) < 1) Then
 section = "Write to the batch file"
 '** Figure out what month this file belongs in. Extrapolate the
 '** information using the knowledge that the file name is

'** xxx-logMMDDYYYY.log
 fileDateString$ = Mid$(fileName$, Instr(1, fileName$, "log", 5) + 3, 8)
 zipName$ = Left$(fileDateString$, 2) & "-" & Right$(fileDateString$, 4) &
".zip"
 zipStatement$ = zipExe & " " & logdir & "\" & zipName & " " & logdir & "\" &
fileName

 Print #batFileNum%, "REM - Archive " & fileName
 Print #batFileNum%, zipStatement$
 Print #batFileNum%, "DEL " & logdir & "\" & fileName
 Print #batFileNum%, ""
 End If

'** Get the next file in the directory and continue
 fileName = Dir$()
 Loop

'** Now that we're done, we should close the batch file and run it

 section = "Run the batch file"
 Close batFileNum%
 taskId% = Shell(batFileName$, 1)

 Exit Sub

processError:
 thisError$ = "Error " & Cstr(Err) & ": " & Error$ & ". Occurred in section " &
section & "."
 Print thisError$
 Reset
 Exit Sub

End Sub

	Introduction
	Strings
	Repeat Function
	Finding the Last Substring
	Left, Right, LeftBack, RightBack
	ReplaceSubstring
	Matching String Patterns
	Replacing Wildcard Patterns
	Finding String Patterns
	Fuzzy Searching (Soundex)
	Converting Double-Byte and Single-Byte Strings
	Reading Large Strings from Fields

	Arrays and Lists
	Converting a String to a List or Array
	Getting an Array or List Data Type
	Determining if an Array or List is Empty
	Removing Empty Elements
	Removing Duplicate Elements
	Adding Two Arrays
	Getting Common Elements
	Getting Different Elements
	Sorting Arrays

	Numbers
	Determining Odd or Even
	Remove Non-Numeric Elements
	Formatting Numbers
	Converting to and from Base 10
	Using Bitwise Operators
	Bit Shifting

	Dates and Times
	Day of Year, Week of Year
	Day of Week
	Month as String
	Number of Days Between Dates
	Amount of Time Between Times
	Number of Weekend Days Between Dates
	Get Day of Month
	Calculating Easter
	Calculating Holidays
	Determining Valid Business Days
	Converting to Valid Business Days
	Date Ranges

	Working with Files
	Get Default File Separator
	Get File Path, File Name
	Create Directory (including subdirectories)
	Make Sequential Output File
	Generate Unique File Name
	Write to a Text File
	Write and Run a Batch File
	Read from a Text File
	Search for Text in a File
	Get Next Token
	Create a Listing of Notes ID Files
	Get Information about an MP3 File
	Searching for Files or Directories
	Deltree

	Miscellaneous Code
	Agent Run on Last Day of the Month
	Get Server Time
	Run Agent on Server
	Toggle Scheduled Agents
	Get User Groups
	Get Database Sizes
	Largest Subset of Two Strings
	Export View to CSV
	Add Group to ACLs
	Zip Web Server Logs

